Characterizing Dusty Debris with the Gemini Planet Imager

Christine H. Chen^{1,2}, Pauline Arriaga³, Sebastian Bruzzone⁴, John Debes¹, Zack Draper, Gaspard Duchêne⁵, Tom Esposito⁵, Mike Fitzgerald³, Dean Hines¹, Sasha Hinkley⁶, Justin Hom⁷, Meredith Hughes⁸, Paul Kalas⁴, Ludmilla Kolokolova⁹, Brenda Matthews¹⁰, Johan Mazoyer¹¹, Stan Metchev¹², Max Millar-Blanchaer¹¹, Jenny Patience⁷, Marshall Perrin¹, Charles Poteet, Laurent Pueyo¹, Fredrik Rantakyro¹³, Bin Ren², Glenn Schneider¹⁴, Remi Soummer¹, Chris Stark¹, Kim Ward-Duong¹⁵, Alycia Weinberger¹⁶, and Schuyler Wolff¹⁷

¹Space Telescope Science Institute, USA, ²Johns Hopkins University, USA, ³University of California, Los Angeles, USA, ⁴Goddard Space Flight Center, USA, ⁵University of California, Berkeley, USA, ⁶University of Exeter, UK, ⁷Arizona State University, USA, ⁸Wesleyan University, USA, ⁹University of Maryland, USA, ¹⁰University of Victoria, Canada, ¹¹Jet Propulsion Laboratory, USA, ¹²University of Western Ontario, Canada, ¹³Gemini Observatory, USA, ¹⁴University of Arizona, USA, ¹⁵Amherst College, USA, ¹⁶Carnegie Department of Terrestrial Magnetism, USA, ¹⁷Leiden University, Netherlands

Some exoplanetary systems contain not only planets but also minor body belts, analogous to the asteroid and Kuiper belts in our Solar System. Planets in these systems gravitationally perturb minor bodies, placing them on crossing orbits where they collide, creating debris dust. Detailed studies of the scattered light from the debris dust can constrain the size and porosity of the grains and therefore the mechanisms by which the dust and parent bodies are processed. The Gemini Planet Imager (GPI) has provided high Signal-to-Noise Ratio (SNR) spectroscopic and polarimetric observations of predominantly bright, highly inclined debris disks. These observations enable detailed measurements of the total intensity and polarization fraction phase functions and the near-infrared reflected light spectrum. We present some recent results using GPI to constrain the properties of circumstellar dust in debris disks from the Gemini Large and Long Program "Characterizing Dusty Debris in Exoplanetary Systems".