

Modeling the Infrared Emission of C₆₀

Aigen Li¹, B.W. Jiang² & J.X.Zhong³ ¹University of Missouri ²Beijing Normal University ³Xiangtan University

Neutral C_{60} has recently been detected in reflection nebulae, protoplanetary nebulae, planetary nebulae, Herbig Ae/Be stars, and young stellar objects through their characteristic infrared emission bands. We model the vibrational excitation of C_{60} and calculate the infrared emission spectra of C_{60} in a wide variety of regions (e.g. reflection nebulae excited by stars of a range of effective temperatures, (proto) planetary nebulae, and dust disks around Herbig Ae/Be stars). The strength of each band (per C atom) and the relative band strength are tabulated for these regions. By comparing with observed C_{60} spectrum, this table allowsone to derive the abundance of C_{60} , and the physical conditions (i.e. the starlight intensities).

Single-photon heating and IR emission spectrum of C₆₀ illuminated by the general interstellar radiation field.

