Volatile and Dusty: The NEOWISE comet survey.

James Bauer¹, Tommy Grav², E. Kramer¹, A. K. Mainzer¹, J. R. Masiero¹, Y. R. Fernandez³, C. Nugent⁴, K. J. Meech⁵, C. M. Lisse⁶, R. Cutri⁴, R. Stevenson¹, S. Sonnett¹, E. L. Wright⁷, and The NEOWISE Team

¹Jet Propulsion Laboratory, California Institute of Technology, USA, ²Planetary Science Institute, USA, ³University of Central Florida, USA, ⁴Infrared Processing Analysis Center, California Institute of Technology, ⁵Institute for Astronomy, University of Hawaii, USA, ⁶Applied Physics Laboratory, John Hopkins University, USA, ⁷University of California, Los Angeles, USA

The 163 comets observed during the WISE/NEOWISE prime mission represent the largest infrared survey to date of comets, providing constraints on dust, nucleus size, and $CO + CO_2$ production. The sample includes 57 long-period comets, as well as over 106 short-period comets, from a variety of cometary dynamical sub-classes. We present detailed analyses of the WISE/NEOWISE comet discoveries, and discuss observations of the active comets showing 4.6 micron band excess. We determine size constraints for the majority of the comets in the sample using coma extraction techniques. We also discuss dust tail analysis determining particle size and ejection time constraints. Finally, find a possible relation between dust and $CO + CO_2$ production, as well as possible differences in the sizes of long and short period comet nuclei.