Light Scattering by Agglomerate Particles with Varying Structure

Evgenij Zubko,1,2 Karri Muinonen,1,3 Yuriy Shkuratov,2 and Gorden Videen4

1Department of Physics, P.O. box 64, FI-00014 University of Helsinki, Finland
2Kharkov National University, 35 Sumskaya St., Kharkov, 61022, Ukraine
3Finnish Geodetic Institute, P.O. box 15, FI-02431 Masala, Finland
4Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301 USA

Using the discrete-dipole approximation (DDA) [e.g., 1], we compute light scattering by agglomerate particles with three different types of structure. All particles are generated with the same algorithm that is described, e.g., in [2]. The particles are of the same size but have different packing densities of \(\rho = 0.169, 0.236, \) and 0.336. We repeat computations of light scattering for three different refractive indices \(m = 1.313 + 0i, 1.5 + 0.1i, \) and 1.6 + 0.0005i, which represent water ice, organic material, and Mg-rich silicates, i.e., the most abundant species in comets. The size parameter \(x = \frac{2\pi r}{\lambda} \) (where, \(r \) is the radius of the circumscribing sphere) is varied from 1 to 36 for icy particles, 32 for organic particles, and 26 for silicate particles (except for \(\rho = 0.336, \) in which case the upper value of \(x \) is limited to 22 due to convergence limitations). In all the cases, we perform averaging of light-scattering properties over a minimum of 500 particles.

Our computations show that all agglomerates produce the negative polarization branch (NPB) at small phase angles \(\alpha \). This phenomenon accompanies back-scattering of sunlight by comets [e.g., 3]. Two quantities that characterize the NPB are the minimum of linear polarization \(P_{\text{min}} \) and the phase angle of the minimum \(\alpha_{\text{min}} \). However, different types of agglomerates reveal similar dependencies of parameters \(P_{\text{min}} \) and \(\alpha_{\text{min}} \) on \(x \). For instance, in all cases, the NPB is not observed at \(x < 4–8 \). The NPB appears in a narrow range of size parameters \(x_{\text{app}} = 5–8 \) and grows fast with size, reaching maximal negative polarization at \(x_{\text{max}} = 7–17 \). Such a dependence of the NPB on \(x \) can be responsible for the blue color of the negative polarization that was observed in comet 17P/Holmes [4]. The approximate relation \(x_{\text{max}} \approx 2x_{\text{app}} \) holds for all non-icy agglomerate particles. Finally, we note that \(\alpha_{\text{min}} \) reveals a clear tendency to decrease when \(x \) increases.

Keywords: light scattering; agglomerates; the negative polarization; comets.

References