Dust Growth in Protoplanetary Disks

Are dust aggregates sticky enough? Yes. Is that true?

Problems in Planetesimal Formation

Two formation processes

- Gravitational Instability (or Stream Instability)
 Problem: Turbulent diffusion decreases dust concentration.
 Gas drag force is too strong!
 (Streaming instability requires dust particles > 10cm-size.)
- Direct Dust Growth

Problem: Fragmentation Barrier

"Can m-sized dust particles stick each other?"
(Collision speed is ~50m/sec [~200km/hr]!)

The answer is YES! (Wada's talk)

Why do the aggregates stick?

- Sticking force between two monomer particles in contact comes from van der Waals force for silicate particles (or hydrogen bond for icy particles).
- Particle interaction model
 - The binding energy between two particles is determined by their surface tension. (Johnson, Kendall & Roberts' theory, 1970's)
 - Drag force against sliding, rolling, & twisting motions (*Dominik & Tielens* 1995,1996, *Wada et al.* 2007)

Wada et al. use this interaction model.

N-body Simulations of Aggregate Collisions

Collision Outcomes (Wada et al. 2007, 2008, 2009)

- compression of aggregates at collisions
- condition for fragmentation

in case of

N-body Simulations of Aggregate Collisions

Density evolution in successive collisions (Suyama et al. 2008)

- formulation of density changes during growth
- formation of extremely low density aggregates
 - ($\rho = 10^{-4}$ g/cm³ for m-sized aggregates!)

Summary of Our N-body simulations

- Icy aggregates can grow if the impact velocity
 - < 60m/sec. This overcomes the fragmentation barrier!
- •Large aggregates have an extremely low bulk densities.

Planetesimal formation by "direct dust growth" is possible! (for icy planetesimals in the outer disk region).

Are aggregates really sticky & fluffy?

Yes, as long as the particle interaction model of JKR theory (+Dominik & Tielens) is correct.

Next question: *Is the interaction model correct?*

Answer is "We don't know yet".

We should re-examine the interaction with Laboratory Experiments and Molecular Dynamics S

Molecular Dynamics Simulation of Monomer Particle Collisions

- Each monomer consists of 3millions of molecules. (FCC crystal)
- Lennard-Jones molecules (Surface tension & Young modulus are known.)
- Head-on collision
- In the case of Ar, monomer radius = 30nm impact velocity = 9m/sec

MD Simulation of Monomer Collisions

Molecular Dynamics Simulation of Monomer Particle Collisions

Preliminary Results :

- JKR theory almost agrees with MD simulation.
- Extra energy dissipation exists, which comes from plastic deformation of the monomers.

Rolling (& sliding) dissipation can be also examined with this MD simulations.

Monomer Interaction can be examined with MD simulation.

More laboratory experiments on monomer interaction are also necessary.