Collisional Modeling of Debris Disks

Alexander "Sasha" Krivov, Torsten Löhne, Hiroshi Kobayashi, Sebastian Müller, Martin Reidemeister, Christian Vitense, and the Herschel / DUNES team

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

Debris disks in planetary systems

Debris disks co-exist with planets

Moro-Martín et al., ApJ **717**, 1123-1139 (2010)

Debris disks in planetary systems

Debris disks are very common

Spitzer:

~15%

~30%

Herschel/DUNES:

	F-type	G-type	K-type	Total
	11	21	18	50
Non-excess	5	13	12	30
Excess (New)	6 (1)	7 (3)	4 (4)	17 <mark>(8)</mark>
Resolved (New)	3 (2)	4 (3)	1 (1)	8 (6)
Cold discs	1	3	4	8

Two approaches to debris disk modeling

Traditional approach

Krivov, Müller, Löhne, & Mutschke, ApJ 687, 608-622 (2008)

Collisional code: ACE

Initial planetesimal belt

Debris disk
at subsequent time instants

Features:

- statistical code in an (m,q,e)-mesh
- stellar gravity & radiation pressure
- collisions (mergers, cratering, disruption)
- diffusion by P-R, stellar wind, gas drag
- distributed parallel computing

Krivov & Sremčević (2003-2004), Löhne (2005-2010)

Thermal emission codes: SEDUCE & SUBITO

Size and spatial distribution of dust, its optical properties

Features:

- NextGen stellar photosphere models
- Mie calculations for arbitrary (n,k)
- Thermal emission (no scattered light)

Müller (2007-2010)

Input and output

Model parameters Star: stellar mass M_{*} stellar luminosity L. stellar age t. Planetesimal belt initial mass Mo location width dr excitation <e>,<i> All solids: bulk density mechanical properties optical properties critical fragmentation energy **Collisions:** fragments' size distribution cratering efficiency

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

The Vega disk: of transient nature?

Su et al., ApJ **628**, 487-500 (2005) Marsh et al., ApJ **646**, L77-L80 (2006) Sub-mm observations: a clumpy ring at ~100 AU Marsh et al.(2006)

Spitzer/MIPS mid- to far-IR: an extended disk ~800 AU Su et al.(2005)

Argued that the disk must be composed of blowout grains and must have an exceptional nature: recent major collision?

The Vega disk: steady-state, naturally

The first-guess model

- First-guess model
- "Collisional age"
- Stellar luminosity
- Location of belt
- Extension of belt
- Dynam. excitation
- Dust composition
- Cratering yes/no
- Q_D^{*} (strong/weak)
- Fragment distrib
- PR effect yes/no

Müller, Löhne, & Krivov, ApJ 708, 1728-1747 (2010)

The Vega disk: steady-state, naturally

The best-fit model

- First-guess model
- "Collisional age"
- Stellar luminosity
- Location of belt
- Extension of belt
- Dynam. excitation
- Dust composition
- Cratering yes/no
- Q_D^{*} (strong/weak)
- Fragment distrib
- PR effect yes/no

Müller, Löhne, & Krivov, ApJ 708, 1728-1747 (2010)

The Vega disk: conclusions

- The Vega disk is consistent with a steady-state collisional cascade
- Cascade probably ignited early in the system's history
- Stems from ring of planetesimals at ~80...120 AU Dynamical excitation probably ~0.1...0.3
- Total disk mass ~10 M_{\oplus} (in <100 km-sized bodies)
- Total mass loss over system's age ~2...3 $\rm M_\oplus$
- Consistent with reduced stellar luminosity
- Cratering collisions mandatory

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

q¹ Eri before Herschel

Star

- Spectral type: F8
- o Distance: 17.4 pc
- Age : ~ 2 Gyr

JUPITER-MASS PLANET

- M sin i: 0.9 M_{Jup}
- Semi-major axis: 2.0 AU
- Eccentricity : 0.1

Mayor et al. 2003, Butler et al. 2006

KUIPER-LIKE BELT

- IRAS, ISO, Spitzer, AKARI: cold dust, with a luminosity 1000 times that of the Kuiper Belt
- Sub-mm APEX/LABOCA images: disk extent is up to several tens of arcsec (*Liseau et al. 2008*)
- HST images suggest a peak at 83AU (Stapelfeldt et al. 2010)

q¹ Eri: Herschel data

Liseau et al., AAp 518, L132 (2010)

q¹ Eri: Herschel data

Liseau et al., AAp 518, L132 (2010)

q¹ Eri: modeling results

q¹ Eri: conclusions

Dust disk & grain properties:

- Mass : 0.02 M_{earth}
- Possible hints for ice: best fit with 50-50 silicate-ice mixture
- Possible hints for material strength: weaker dust (Q_D*~10⁷erg/g)

Parent belt:

- Location: 75-125 AU
- Eccentricities: 0.0...0.1
- Mass : ~1000 M_{earth} (if 2 Gyr), but ~100 M_{earth} (if 0.5Gyr)
- Probing collisional history: support to delayed stirring (self-stirring by Plutos, stirring by q¹Eri c, or even q¹Eri b)

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

ϵ Eri system and its puzzling warm dust

One known RV planet with a=3.4 AU (Hatzes et al. 2000) One presumed planet at ~40 AU (Liou & Zook 1999) A "Kuiper belt" at ~60 AU (Gillett 1986, Greaves et al., 1998, 2005) Warm dust down to a few AU (Backman et al. 2009)

Warm dust that produces the IRS spectrum is located at a few AU An "asteroid belt" there would be destroyed by the known RV planet

Possible solution

Warm dust could be transported by stellar wind from the "Kuiper belt"

Reidemeister, Krivov, Stark, et al., AAp (submitted)

Modeled size and radial distribution

The disk is transport-dominated, despite $\tau \sim 2x10^{-4}$

Reidemeister, Krivov, Stark, et al., AAp (submitted)

Modeled SED and brightness profiles

The model reproduces all pre-Herschel data: SED from mid-IR to sub-mm, Spitzer/IRS spectrum, Spitzer/MIPS radial profiles. Will it be consistent with Herschel data?

Reidemeister, Krivov, Stark, et al., AAp (submitted)

ϵ Eri: conclusions

- The warm dust is produced farther out and is brought inward by stellar wind drag
- Possible hints for icy dust
- Known inner planet does not affect dust distributions much, so its parameters cannot be further constrained

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

Known EKB...

Mass of the known EKB \approx 0.007 M $_{\oplus}$

... and its simulated dust disk

Size distribution

Radial distribution

The dust disk from the known TNOs would have fractional luminosity ~3x10⁻⁸ and would be transport-dominated

"True" (debiased) EKB...

Mass of the known EKB \approx 0.007 M $_{\oplus}$

Mass of the "true" EKB \approx 0.12 M $_{\oplus}$

... and its simulated dust disk

Size distribution

Radial distribution

The dust disk of the "true" EKB would have fractional luminosity ~1x10⁻⁶ and would be collision-dominated

Kuiper Belt: conclusions

- Estimated mass of the EKB is ~0.1 Earth mass, a half of which is in classical and resonant objects
- Estimated fractional luminosity of the EKB dust disk is ~1 x 10⁻⁶, close to the Herschel detection limits

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

Some of the Herschel/DUNES disks are "normal"...

Marshall et al., in prep.

...but some others are tenuous and astonishingly cold

Marshall et al., in prep.

Challenges of the cold disks

Max at 160 µm would require dust to be typically at distances much larger than 100 AU

But:

Planetesimals can hardly form outside ~100 AU Resolved images also suggest radii of ~100 AU

Excess flux of four most reliable cold disks observed by DUNES

Tried planetesimal belts at r=100AU, Δ r=0.2, e~0.1, 50%ice+50%sil G150 = 1.50 M_{\odot} G30 = 0.30 M_{\odot} G5 = 0.05 M_{\odot} G1 = 0.01 M_{\odot}

Tried to exclude dust in the inner parts of a dust disk (< 60 AU) assuming that each belt is shaped by a Fomalhaut-like planet

 $G300 = 0.30 M_{\oplus}$ $G50 = 0.05 M_{\oplus}$ $G10= 0.01 M_{\oplus}$

Tried other dust compositions, large grains only, and blackbody

Cold disks: conclusions

"Cold disks" remain unexplained

Any mechanisms to remove (or depress production) of μ m-sized grains? Or their far-IR emission stronger than expected?

Outline

- Ideas, methods, codes
- Application to Vega
- Application to q¹ Eridani
- Application to ε Eridani
- Application to the Kuiper belt
- Application to "cold debris disks"
- Problems and unknowns

Problems

Collisional and thermal emission models seem to work and to give reasonable results, but...

- Debris disks of solar-type and late-type stars: modeled SEDs seem to be generally too warm. Why?
- Lack of the modeled 70µm emission in the central parts of DDs around solartype stars. Modeling problem or indication of "asteroid belts"?
- Cold debris disks remain a mystery!

Unknowns

- Are all major physical processes included?
- Critical fragmentation energy at dust sizes unknown
- Material composition / optical properties of dust in debris disks largely unknown

Are Mie calculations + assumption of compact grains reasonable?

Benz & Asphaug, Icarus **142,** 5-20 (1999)

Stognienko et al. AAp **296,** 797-809 (1995)