星形成過程の非理想放射磁気流体シミュレーション：星周円盤の早期形成

Department of Astrophysical Sciences, Princeton University
Department of Physics, University of Tokyo
JSPS Research Fellow

Kengo TOMIDA
Kohji Tomisaka, Masahiro N. Machida, Tomoaki Matsumoto,
Satoshi Okuzumi, Yasunori Hori

Tomida, Okuzumi & Machida in prep.
Contents

• Introduction
• RMHD Simulations of Protostellar Collapse
 – Ideal MHD
 – With Ohmic Dissipation
 – With Ohmic Dissipation and Ambipolar Diffusion
• Implication for / from Observations
• Conclusions
Introduction
Ultimate Goals of Star Formation Studies

1. Stellar Initial Mass Function
 Stellar mass determines stellar evolution
 Chemical and Dynamical feedback from massive stars control the universe
 → Mass distribution of stars is crucial
 ⇒ What is the origin of the IMF?

2. Origin of the Sun, Earth, other planets, and ourselves
 Formation of our solar system is still unclear, and now more than thousand exoplanets are found
 ⇒ Formation scenario of star, disk and planets = stellar system

(From Wikipedia)
Protostellar Collapse

Taurus Molecular Cloud (Nagoya, 4m)

- Cloud Core \(\sim 0.1 \text{ pc} \quad n \geq 10^4 / \text{cc}\)

- \(\sim 20 \text{ pc}\)

- \(1-10 \text{ AU}\)

- The site of disk & planet formation
- The origin of the IMF \(\leftarrow\) Star Formation Efficiency
- Many physical processes are involved here: self-gravity, magnetic fields, radiation transfer, turbulence, chemistry, non-ideal MHD effects, etc...
- Huge dynamic range: \(0.1 \text{ pc} / 1 \text{ Rs} \sim 4.5 \times 10^6\)

\(\Rightarrow\) Sophisticated numerical simulations are required
Protostellar Collapse: 1D RHD

Masunaga & Inutsuka 2000

1. Isothermal collapse
2. First (Adiabatic) core
3. Second collapse (H$_2$ dissociation)
4. Second (Protostellar) core

Radiation transfer and chemical reactions control the evolution. This scenario is well established based on 1D RHD simulations.

(see also Larson 1969)
“Problems” in Protostellar Collapse

• Angular Momentum Problem

\[j_{\text{cloud}} \approx 5 \times 10^{21} \left(\frac{R}{0.1 \text{pc}} \right)^2 \left(\frac{\Omega}{4 \text{km s}^{-1} \text{pc}^{-1}} \right) \text{cm}^2 \text{s}^{-1} \quad \gg \quad j_\star \approx 6 \times 10^{16} \left(\frac{R_\star}{2R} \right)^2 \left(\frac{P}{10 \text{day}} \right)^{-1} \text{cm}^2 \text{s}^{-1} \]

\[\Rightarrow \text{Efficient angular momentum transport during protostellar collapse} \]
\[\Rightarrow \text{Gravitational torque, magnetic braking, outflows} \]

• Magnetic Flux Problem

Similarly, magnetic flux in cloud cores >> stellar magnetic flux
\[\Rightarrow \text{Magnetic fields must dissipate during the collapse} \]
\[\Rightarrow \text{Ohmic dissipation, ambipolar diffusion, turbulence} \]

• “Magnetic Braking Catastrophe” (Mellon & Li 2008,09, Li+ 2011, etc.)

Magnetic braking is too efficient; no circumstellar disk is formed
\[\Rightarrow B-\Omega \text{ misalignment, turbulence, non-ideal MHD effects, etc.} \]

\[\Rightarrow \text{Realistic 3D simulations with many physical processes} \]
Bate (1998) first performed 3D SPH simulations of protostellar collapse and showed that the rotationally-supported disk becomes unstable and spiral arms are formed. These non-axis-symmetric structure can transport ang. mom. efficiently and finally a protostar is formed. (see also Matsumoto & Hanawa 03, Saigo et al. 08, Commercon et al. 08, etc.)

Note: Thermodynamics (radiation transfer) is modeled using a fitting formula based on 1D RHD simulations (so-called barotropic approximation)
Collapse of a Molecular Cloud Core to Stellar Densities:
Rotational Instability of the First Hydrostatic Core

Matthew R. Bate
MPI für Astronomie, Heidelberg, Germany
Institute of Astronomy, Cambridge, U.K.

October 1998
Observations suggest that cloud cores are considerably (supercritical to marginally subcritical) magnetized ($\mu \sim 2-10$). Therefore magnetic fields must have significant effects, actually even in the supercritical regime.

NOTE: these observations are difficult and can have large uncertainties.
Magnetic Braking and Outflows

As a result of interaction between magnetic fields and rotation, bipolar outflows are launched from the collapsing cloud. Those outflows and magnetic braking transport angular momentum very efficiently.

Two modes of outflows: Strong fields result in Magneto-centrifugal mode (Blandford & Payne 1982), while weak fields drive magnetic-pressure mode. (see also, Mouschovias, & Paleologou 1979, 80, Kudoh et al. 1998, etc.)

Magnetic fields actually transport angular momentum “too efficiently”. Circumstellar disks are not formed, fragmentation is strongly suppressed. This is a serious problem: Binary rate is known to be high (M: >30% G: >50%, A: ~80%), and we know lots of circumstellar disks and planets exist. (see also, Mestel & Spitzer 1956, Mellon & Li 08, 09, Li et al. 11, Hennebelle & Ciardi 09, etc.)
RMHD Simulations of Protostellar Collapse
ngr3mhd code

- Huge dynamic range: 3D nested-grids
- MHD \rightarrow HLLD (Miyoshi & Kusano 2005) (+ Carbuncle care \rightarrow shock detection + HLLD-)
- Fast, robust and as accurate as Roe’s solver
- Independent from the details of EOS
- div $\mathbf{B}=0$ constraint \rightarrow Mixed cleaning (Dedner+ 2002)
- Self-gravity \rightarrow Multigrid (Matsumoto & Hanawa 2003)
- Radiation \rightarrow Gray Flux Limited Diffusion (Levermore & Pomraning 1981) + Implicit (BiCGStab + ILU decomposition (0) preconditioner)
- EOS including chemical reactions (H$_2$, H, H$^+$, He, He$^+$, He$^{2+}$ and e$^-$)
- Ohmic dissipation \rightarrow Super Time Stepping (Alexiades+ 1996)
- **NEW** Ambipolar Diffusion (neutral-charged decoupling) with STS
- The code is optimized for a vector supercomputer (NEC SX-9).

\Rightarrow The latest version of Larson’s protostellar collapse simulation.
Basic Equations (w/o div B cleaning)

\[
\frac{\partial \rho v}{\partial t} + \nabla \cdot \left[\rho v \otimes v + \left(p + \frac{1}{2} |B|^2 \right) I - B \otimes B \right] = -\rho \nabla \Phi + \frac{\sigma_R}{c} F_r, \\
\frac{\partial B}{\partial t} - \nabla \times \left(v \times B - \eta_0 J \right) - \frac{\eta_A}{|B|^2} B \times F = 0, \\
\frac{\partial e}{\partial t} + \nabla \cdot \left[\left(e + p + \frac{1}{2} |B|^2 \right) v - B (v \cdot B) + \eta_0 F + \frac{\eta_A}{|B|^2} (B \times F) \times B \right] = \\
-\rho v \cdot \nabla \Phi - c\sigma_P (a T_g^4 - E_r) + \frac{\sigma_R}{c} F_r \cdot v, \\
J \equiv \nabla \times B, \quad F \equiv J \times B, \quad \nabla \cdot B = 0, \\
\n\n\frac{\partial E_r}{\partial t} + \nabla \cdot [v E_r] + \nabla \cdot F_r + P_r : \nabla v = c\sigma_P (a_r T_g^4 - E_r), \\
F_r = \frac{c \lambda}{\sigma_R} \nabla E_r, \quad \lambda(R) = \frac{2 + R}{6 + 2R + R^2}, \quad R = \frac{\nabla E_r}{\sigma_R E_r}, \\
P_r = \mathbb{D} E_r, \quad \mathbb{D} = \frac{1 - \chi}{2} I + \frac{3\chi - 1}{2} n \otimes n, \quad \chi = \lambda + \chi^2 R^2, \quad n = \frac{\nabla E_r}{|\nabla E_r|}.
\]
Simulation Setup

Nested-grid RMHD simulations with ngr3mhd code
- Ideal MHD model
- With Ohmic Dissipation
- Plus Ambipolar Diffusion

Resolution: >16 cells / λ_{Jeans}
643 x 15 levels at the end of FC
Typical resolution @ FC \sim 0.1 AU

- 1 Ms unstabilized BE sphere ($\rho_c=1.2 \times 10^{-18}$ g/cc, $T=10$K, $R=8800$AU)
- $B_z=20\mu$G ($\mu \sim 3.8$), $\Omega=0.046/t_{\text{ff}} \sim 2.4 \times 10^{-14}$ s$^{-1}$, aligned rotator
- 10% $m=2$ density perturbation
The central gas element evolves following EOS in $\rho > 10^{-12}$ g/cc. The evolution is consistent with MI2000, except for details of EOS.
Magnetic Braking (+Outflow) is so efficient that the FC is not supported by rotation = Magnetic Braking Catastrophe (at least in the early phase)
Ohmic Dissipation & Ambipolar Diffusion

Ohmic Dissipation: Effective in the high density region
Ambipolar Diffusion: More effective in the lower density region

ρ, T, B are obtained from simulations. Reynolds number is based on free fall & Jeans length.

First Core

Cut-off by K-ionization
Non-ideal MHD Models: Outflows

Outflows are not affected by non-ideal MHD effects; they simply travel further because of the longer lifetime of the first cores.
Non-ideal MHD Models: First Cores

OD: Slow-rotating, vertical inflation by heating from second core
AD: Supported by rotation, non-axisymmetric (GI), but size is still small
Magnetic Reynolds Number = \(VL/\eta \): dimension-less indicator of dissipation

- **Red** = ideal → **White (\(\sim 1 \))** = marginal → **Blue** = highly dissipative

OD only: only central region becomes dissipative

OD+AD: almost the whole first core becomes dissipative

AD works in more extended region and extract magnetic flux from FC
Magnetic Flux Loss

OD+AD model is significantly less magnetized from the beginning, while OD model lose the magnetic flux gradually later in the FC phase. At the end, OD+AD is x15, OD is x3 weakly magnetized than the Ideal.
Angular Momenta in FCs

FC in OD+AD model has significantly larger angular momentum
(\sim x300 larger than ideal model, \sim x10 larger than OD model)

Almost the whole first core disk becomes dissipative in the OD+AD case
\rightarrow Magnetic angular momentum transport is strongly suppressed

But the disk size remains almost unchanged, \sim 5AU \rightarrow regulated by B?
Fate of the disk and outflows

Long-term (till class-I phase) MHD simulation using a sink particle. Outflows and disks grow continuously, $R_{\text{disk}} \sim 100$ AU

Machida & Hosokawa 13
Implications from / for Observations
1.3mm Dust continuum observations of Class-0 sources with PdBI. The observed disks are small and more consistent with the MHD models.
A well-studied example: L1527 IRS

Tobin+ 2012 (SMA & CARMA): $R \sim 120$ AU disk around 0.2 Ms protostar
Ohashi+ submitted. (ALMA Cycle-0): $R < 60$AU around 0.3 Ms protostar
⇒ Disks can be formed early, but should be small in the early phase
Recent first core candidates: L1451-mm, Barnard 1-bN, Per-Bolo 58 etc.

- Faint compact molecular cores without stellar NIR emission
- Associated with compact, slow outflows without fast jet
- However: it must be rare: ~ 1 FC in 100-1000 molecular cloud cores
- Predicted in Larson 1969 but not confirmed observationally yet
To Summarize: A Schematic Picture
Summary

RMHD simulations of protostellar collapse with non-ideal MHD

• Magnetic braking is so efficient in the ideal MHD case that no rotationally-supported disks can be formed in the early phase
• Ohmic dissipation enables early formation of disks
• As natural byproducts, two different outflows are launched: slow, loosely collimated outflows from the first core scale and fast, well collimated jets from the protostellar core scale
• With ambipolar diffusion, disk formation can be possible even before the second collapse (= birth of a star)
• Disks can be formed early, but should be small, will grow later
• Magnetic Braking Catastrophe is not so catastrophic as it sounds, rather a quantitative question: how, when, and how massive?
• Unfortunately, it sensitively depends on microphysics (i.e. dust grain properties). Broad parameter survey is needed.
Thank you!