火星の内部構造

現在の火星の上部マントルはソリダス近傍の 温度状態にあるのか?

2013年1月9日北海道大学

火星の熱史

Loddoch & Hansen (2009)

Te ~ 100-80 km to support volcano

Arkani-Hamed JGRE 105,26713 (2000)

Thick lithosphere to support volcano

Admittance analysis (gravity + topography)
 Te ~150 km, density 2900~3100 kg/m³
 McGovern et al JGRE 107 (2002)

Te ~90 km, density 3200 kg/m³

Belleguic et al. JGRE 110 (2005)

NPC loading によるdeflection ~100m

Thickness of lithosphere Te ~ 300 km at NP

Phillips et al. Science 320,1182 (2008)

「従来」の火星像

・最初の15億:活発な火成活動
・最近:内部活動度の衰退、表層活動の停止
・厚いリゾスフェア:冷却の進んだ表層部

地球よりも進化の進んだ惑星

Phobosの潮汐摩擦 (Billsの主張)

Phobos on Arsia

Moon:27.3d Earth:24.h Phobos:7h39m Mars:24.6h

$$rac{da}{dt}=3.7\,\,cm/yr$$

$$rac{da}{dt} = -4.03 \, \, cm/yr$$

 $\gamma = (0.6694 \pm 0.0029)^{\circ}$

$Q = 85 \ for \ Mars$

きわめて大きな散逸

Bills et al (2006)

潮汐摩擦はどこで?

- ・ 大気との相互作用?
- ・ 大規模な地下水系?
- ・ 大規模な凍土層?
- マントルでの散逸?

Rondanelli et al. GRL 33 (2006)

Atmospheric contribution to the dissipation of the gravitational tide of Phobos on Mars

c ~ 240 m/s > U ~ 10 m/s

where c is the dimensional phase speed of the tide and U is a typical scale for the horizontal velocity in Mars' atmosphere

Conclusion; no effect

大規模な地下水系?

連続した地下水系の 潮汐応答?

Tidaly induced flow through porous media

Cliffford & Parker Icarus 154,40 (2001)

Q=85 in Mantle?

グローバルな部分溶融層? 融点に近い温度

 $\mathbf{Q_{tidal}} = \mathbf{80}$

Mars

 $\begin{aligned} Q_{tidal} &= 10 \\ Q_{tidal}(mantle) &= 280 \end{aligned}$

新しい火星像 「アクティブな火星」 「静かな火星」 地球と異なったマントルダイナミクス? 厚いリソスフェアの下の熱いマントル? プレートテクトニクスの存在しない、小さな天体 で熱いマントルは存在できるのか?

地球にドップリ浸かってしまった我々の マントルダイナミクス像への挑戦

厚いリソスフェアの下の熱いマントルは可能か?

1.定義の問題

1.「熱い」はソリダスとの比較
 1.鉄の多い系のソリダス温度は低い!
 2.水が存在?
 2.プロセスの問題
 1.厚いリゾスフェアをどう取り扱うか?

ソリダス温度

鉄、アルカリが多いとソリダスは低下

Herzberg et al,2000

Variation of chemical compositions in volcanic provinces

composition estimated by CRiSM data Baratoux et al 2011.

