月地殻形成条件から制約する 月バルク組成

東京大学 永原研 博士2年 酒井理紗

a co

Introduction 月の観測事実

月は地球の次に最も観測事実の多い天体

月密度・慣性能率

Jones & Palme (2000), Jones & Hood (1990), Mueller et al. (1988)

ρ~3.34g/cm³, MI~0.39 ⇒ 小さいコア(<400km)

地震波速度

Nakamura et al. (1982), Kuskov & Kronrod (1998) 剛性率, 密度構造 → 地殻厚(~60km?)

Apolloサンプル, 隕石

Warren (2005), Longhi (1992, 2003), Wasserburg & Papanastassiou (1971), Wänke et al. (1971)

⇒ 月地殻は古い斜長岩(斜長石:CaAl₂Si₂O₈)

リモートセンシング

Bart et al. (2011), Song et al. (2010), Mitrofanov (2010) Ishihara et al. (2009), Ohtake et al. (2009), Tompkins & Pieters (1999)

⇒ 地殻厚(~45±10km), 表層の鉱物分布

Introduction 月全体の化学組成

探査で得られる表面の情報からではバルクの構造、組成は推定困難

FeO:密度,マントル化学組成 Al₂O₃:地殻主要成分

Introduction 月地殻形成

■月地殻は大規模マグマオーシャンから斜長石が浮上して形成

Introduction 月地殻形成

■月地殻は大規模マグマオーシャンから斜長石が浮上して形成

Purpose & Procedure

— 本研究の目的 観測事実と整合的な月地殻形成条件から マグマオーシャン組成(~月バルク組成)を制約する

初期LMO組成の仮定

SiO₂, Al₂O₃, FeO, MgO, CaOの5成分系

BSE (Bulk Silicate Earth:地球のマントル組成)

Purpose & Procedure

手法

— 本研究の目的 観測事実と整合的な月地殻形成条件から マグマオーシャン組成(~月バルク組成)を制約する

結晶分離効率

結晶分離効率とマグマ組成の関係

結晶分離とマグマ組成

段階的な結晶分離モデル I) 初期マグマオーシャン (深さI000 km) _{月半径 ~1738km} 2) 平衡結晶化

3) 臨界結晶化度X (0<X≤40%) に到達後, 瞬時に分離 Sato (2005), Hoover et al. (2001), Carroll (1996)

結晶化度 0%

結晶分離とマグマ組成

段階的な結晶分離モデル I) 初期マグマオーシャン (深さ1000 km) _{月半径 ~1738km} 2) 平衡結晶化

3) 臨界結晶化度¥ (0<¥≤40%)に到達後, 瞬時に分離 Sato (2005), Hoover et al. (2001), Carroll (1996)

結晶化度 **X%**

4) 斜長石が析出するまで、浅くなったLMOで 結晶化と分離を繰り返す

結晶分離とマグマ組成

分離

段階的な結晶分離モデル I) 初期マグマオーシャン (深さ1000 km)

2) 平衡結晶化

3) 臨界結晶化度¥ (0<¥≤40%)に到達後, 瞬時に分離 Sato (2005), Hoover et al. (2001), Carroll (1996)

結晶化度 0%

結晶分離とマグマ組成

段階的な結晶分離モデル I) 初期マグマオーシャン (深さ1000 km) 2) 平衡結晶化 3) 臨界結晶化度X (0<X≤40%)に到達後, 瞬時に分離

Sato (2005), Hoover et al. (2001), Carroll (1996)

結晶化度 0%

結晶分離とマグマ組成

平衡結晶化

段階的な結晶分離モデル I) 初期マグマオーシャン (深さ1000 km)

2) 平衡結晶化

3) 臨界結晶化度¥ (0<¥≤40%)に到達後, 瞬時に分離 Sato (2005), Hoover et al. (2001), Carroll (1996)

結晶化度 X%

結晶分離とマグマ組成

分離

段階的な結晶分離モデル

I) 初期マグマオーシャン (深さ1000 km)

2) 平衡結晶化

3) 臨界結晶化度¥ (0<¥≤40%)に到達後, 瞬時に分離 Sato (2005), Hoover et al. (2001), Carroll (1996)

結晶分離とマグマ組成

分離

段階的な結晶分離モデル I) 初期マグマオーシャン (深さ1000 km)

2) 平衡結晶化

3) 臨界結晶化度¥ (0<¥≤40%)に到達後, 瞬時に分離 Sato (2005), Hoover et al. (2001), Carroll (1996)

結晶分離とマグマ組成

段階的な結晶分離モデル I) 初期マグマオーシャン (深さ1000 km)

2) 平衡結晶化

3) 臨界結晶化度X (0<X≤40%) に到達後, 瞬時に分離 Sato (2005), Hoover et al. (2001), Carroll (1996)

熱力学計算 (MELTS/pMELTS) Ghiorso & Sack (1995), Ghiorso+ (2002)

主に地球のMORBを対象にした岩石融解実験のデータのコンパイルに 基づき、ある温度・圧力下での相平衡を熱力学計算するプログラム ※実験データの少ない組成範囲では信頼性が低い

⇒地殻形成時の組成、結晶化度、析出した鉱物の種類、量、組成

	000				X MELTS (code release 5.0)								
	Connands	Edi t	Composition I	ntensive Va	riables Options	8		_					Help
-	Si02 Ti02 Al203 Fe203 Cr203 Fe0 Mn0 Mg0 Mg0 Mg0 Co0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca0 Ca	97-80 I I I I I I I I I I	Si02 Ti02 Al203 Fe203 Cr203 Fe0 Mr0 Mg0 Ni0 Co0 Ca0 Na23 K20 P205 H20 C02 S03 Cl20-1 F20-1 Phase: none		System: T (C) P (bars) f02: log10 - 初期温 名晶分 Naiting for comma 初期解 Click on Icon to	AOFM 住度, 内の の user i した(こ Launch Option hics Sow	E た り 仕 た 要 い	J(一生 J(一生 J(しま 5 成生	Mass (grans liquid solids assimilant fractionate 定的。 ch c	s) of: ed Scon-Q ST Max FiO ₂ , F	Ee2O	Satn Ck → Add Pi Soln → Linear Update S, Na2C	> Proj > Satn Ck
	Double-click (on phase m Inits Aff	name for physical p inity Formula Co 品度,	eroperties d eponent mo 鉱物	isplay I frac Component の種類	¢ • <u>=</u> • ب •	^{aponent} mol f	frac Compo 残	nent wolf 液の	rac Component)量●維	wol frac C L成	Phase units:	grams 🖃

地殻形成時のLMO組成,厚み,内部構造の比較

地殻形成時のLMO組成,厚み,内部構造の比較

地殻形成時のLMO組成、厚み、内部構造の比較

斜長石析出までに形成されるマントル鉱物量比

・どの組成でも75-80vol% 固化で斜長石が析出
・Al₂O₃多 → opxの代わり にcpx, spが析出
・FeO多 → pxが減りolが 増える

> ol (Mg, Fe)₂SiO₄ opx (Mg, Fe)SiO₃ cpx (Ca, Mg, Fe)₂Si₂O₆ sp (Mg, Fe)Al₂O₄

制約Ⅰ:対流LMO中での斜長石浮上
FeO量多→メルトρ大,η小
⇒FeO量の下限値

制約2:地殻厚みを作れる斜長石量
BSE組成でも十分濃集。多すぎるとsp析出してAl₂O₃を取られる
→Al₂O₃の上限値

制約3:斜長石と共存する鉱物組成 FeO量多で地殻形成時は低Mg#. mafic鉱物の高Mg#(~0.75)と不整合 ⇒FeO量の上限値(Al₂O₃量に依存)

Mg# = MgO/(MgO+FeO)

制約I:対流LMO中での斜長石浮上 FeO量多→メルトρ大,η小 ⇒FeO量の下限値

制約2:地殻厚みを作れる斜長石量
BSE組成でも十分濃集。多すぎるとsp析出してAl₂O₃を取られる
⇒Al₂O₃の上限値

制約3:斜長石と共存する鉱物組成 FeO量多で地殻形成時は低Mg#. mafic鉱物の高Mg#(~0.75)と不整合 ⇒FeO量の上限値(Al₂O₃量に依存)

Mg# = MgO/(MgO+FeO)

LMO結晶分離モデル①

Tonks & Melosh (1990)

対流中での結晶分離を考察し、Liquidusと断熱温度勾配の関係から 地球と月のマグマオーシャンの違いを説明

乱流状態のマグマ中で斜長石が浮上しなければならない

LMO結晶分離モデル②

Martin & Nokes (1989)

マグマ溜まりでは、対流速度>>結晶沈降速度 ⇒結晶は境界層でStokes' Lawに従い分離

流体中の粒子数は指数関数的に減少 (理論的実験的に検証)

$$N = N_0 \, \exp\left(-\frac{v_s}{h}t\right)$$

仮定 ①1次元(流体内は均質)
②粒子濃度は十分低い
③流体内への再取り込みなし

LMO結晶分離モデル②

Martin & Nokes (1989)

マグマ溜まりでは、対流速度>>結晶沈降速度 ⇒結晶は境界層でStokes' Lawに従い分離

流体中の粒子数は指数関数的に減少 (理論的実験的に検証)

$$N = N_0 \, \exp\left(-\frac{v_s}{h}t\right)$$

仮定 ①1次元(流体内は均質) ②粒子濃度は十分低い ③流体内への再取り込みなし

LMO結晶分離モデル③

Solomatov et al. (1993) 境界層での粒子の再取り込みのメカニズムと定量的基準 ⇒再取り込みは粘性応力が十分大きいときに起きる

$$D > \frac{10}{\Delta \rho g} \left(\frac{\eta \alpha g F}{C_p}\right)^{\frac{1}{2}}$$

$$\Phi_{\rm Wit} = 1 \pm \eta \rho_{\rm Wit} = 1 \pm \eta \sigma_{\rm Wit}^{-1}$$

の粒子は取り込まれずに分離

D [m] : 粒径 α [K⁻¹] : 熱膨張率 η [Pa s] : 粘性 g [m/s²] : 重力加速度 Δρ [J/(kg K)] : 粒子と流体の密度差

C_p [J/(kg K)] : 熱容量 *F* [J/(m²s)] : 表面の熱流量

マグマ溜まりではI0^{-1~0}mm, 月マグマオーシャンではI0⁰⁻¹mm 重力分離に強く影響するパラメーター:粘性, 粒径, 密度差, 熱流量

制約1:対流LMO中での斜長石の浮上

月地殻を作れる斜長石量が必要

- ・分化過程で析出する斜長石量
- ・地殻の厚み,組成 ~45km ~80vol%

制約I:対流LMO中での斜長石浮上 FeO量多→メルトρ大,η小 ⇒FeO量の下限値

制約2:地殻厚みを作れる斜長石量
BSE組成でも十分濃集.多すぎるとsp析出してAl₂O₃を取られる
→Al₂O₃の上限値

制約3:斜長石と共存する鉱物組成 FeO量多で地殻形成時は低Mg#. mafic鉱物の高Mg#(~0.75)と不整合 ⇒FeO量の上限値(Al₂O₃量に依存)

- : 熱力学計算
- : Ishihara+ (2009), Wieczorek & Zuber (2001)

⇒Al₂O₃量が極端に多いと深部でスピネル(MgAl₂O₄)析出

制約I:対流LMO中での斜長石浮上 FeO量多→メルトρ大, η小 ⇒FeO量の下限値

制約2:地殻厚みを作れる斜長石量 BSE組成でも十分濃集。多すぎる とsp析出してAl₂O₃を取られる →Al₂O₃の上限値

制約3:斜長石と共存する鉱物組成 FeO量多で地殻形成時は低Mg#. mafic鉱物の高Mg#(~0.75)と不整合 ⇒FeO量の上限値 (Al₂O₃量に依存)

月表層の鉱物組成との比較

- ・高地の岩石に含まれるmafic mineralsのMg#
 - : 熱力学計算と観測事実との比較 Mg# = MgO/(MgO+FeO)

⇒FeO量が多いとMg#が低いmafic mineralsしか析出しない

制約Ⅰ:対流LMO中での斜長石浮上
FeO量多→メルトρ大,η小
⇒FeO量の下限値

制約2:地殻厚みを作れる斜長石量
BSE組成でも十分濃集.多すぎる
とsp析出してAl₂O₃を取られる
⇒Al₂O₃の上限値

制約3:斜長石と共存する鉱物組成 FeO量多で地殻形成時は低Mg#. mafic鉱物の高Mg#(~0.75)と不整合 ⇒FeO量の上限値(Al₂O₃量に依存)

これまでの結果

- ・FeO, Al₂O₃はBSEより多い
- ・Al₂O₃の上限値の制約が弱い

地殻のREE情報から初期LMOのREEパターンに戻し、析出したcpx量を制約

*CI chondriteを仮定

- ・蒸発凝縮:分配係数は複雑、地殻岩石のきれいなパターン説明不可
- ・衝突天体の分化:衝突天体はほぼ全部月になる?

月地殻のREEパターン

Apolloサンプル、月隕石のFAN全岩もしくはplのREEパターン

FAN中のpl量が高い、年代が比較的古い、REE量が相対的に低め
 ⇒ 15415(FAN), 60025(pl), 60055(pl)

Conclusion 月マグマオーシャンの組成範囲

これまでに比べAl₂O₃(CaO)量に極端に富んだ組成は制約された

BSEよりAl₂O₃, FeO量にともに富んだ月バルク組成を示唆

- (I) 衝突天体の組成を反映?
- (2) 月形成円盤での蒸発・凝縮, Fe metalの酸化?
- (3) 月形成巨大衝突時に原始地球の玄武岩質な初期地殻の取り込み?

月地殻形成条件からマグマオーシャン組成(~月バルク組成)に制約

これまでの研究

- ・対流マグマ中での斜長石浮上
- ・地殻厚みを作る斜長石析出量
- ・斜長石と共存するmafic鉱物組成

⇒初期FeO量はBSEより多い(~I.4 ×BSE) Al₂O₃量の制約は弱い

本発表

地殻のREE情報からマントル中でのcpxの 析出量を推定し、初期Al₂O₃量上限値に制約 ⇒初期Al₂O₃量:~I-I.3 ×BSE

これから

自分で月試料を組成分析し、地殻中の Mg#, REEパターンを総合的に理解 今週:北大で月隕石Y-86032をSIMS分析

