

The collisional N-body code REBOUND and three applications to Saturn's Rings

Hanno Rein @ Kobe, March 2012

REBOUND

- Code description paper published by A&A, Rein & Liu 2012
- Multi-purpose N-body code
- First public N-body code that can be used for granular dynamics
- Written in C99, open source, GPL
- Freely available at http://github.com/hannorein/rebound

REBOUND modules

Geometry

- Open boundary conditions
- Periodic boundary conditions
- Shearing sheet / Hill's approximation

Integrators

- Leap frog
- Symplectic Epicycle integrator (SEI)
- Wisdom-Holman mapping (WH)

Gravity

- Direct summation, $O(N^2)$
- BH-Tree code, O(N log(N))
- FFT method, O(N log(N))
- GRAPE, hardware accelerated, $O(N^2)$

Collision detection

- Direct nearest neighbor search, $O(N^2)$
- BH-Tree code, O(N log(N))
- Plane sweep algorithm, O(N) or $O(N^2)$

Real-time visualization

- OpenGL

Rein & Liu 2012

Symplectic integrators

Integrators

- REBOUND uses symplectic integrators
- Symplectic integrators mimic symmetries that are manifest in the Hamiltonian such as energy, momentum, angular momentum

Symplectic integrator: Leap-frog

$$H = \frac{1}{2}p^2 + \Phi(x)$$

Drift Kick

$$x \to x + v \frac{\Delta t}{2} \to v + \nabla \Phi \Delta t \to x + v \frac{\Delta t}{2}$$

Mixed variable symplectic integrator

- MVS give another huge enhancement in accuracy
- Can be used whenever motion is dominated by one process and slightly perturbed by another process

Error = $\epsilon (\Delta t)^{p+1} [H_0, H_{pert}]$

Rein & Tremaine 2011

Mixed variable symplectic integrator

$$H = \frac{1}{2}p^{2} + \Phi_{\text{Kepler}}(x) + \frac{\Phi_{\text{Other}}(x)}{\textbf{Kepler}} + \frac{\Phi_{\text{Other}}(x)}{\textbf{Kick}}$$

Symplectic Epicycle Integrator

$$\begin{split} H = & \frac{1}{2}p^2 + \Omega(p \times r)e_z + \frac{1}{2}\Omega^2\left[r^2 - 3(r \cdot e_x)^2\right] + \frac{\Phi(r)}{\text{Epicycle}} \end{split}$$

Rein & Tremaine 2011

Symplectic Epicycle Integrator: Rotation

- Solving for the orbital motion involves a rotation.
- Formally $\det(D) = 1$, but due to floating point precision $\det(D) \sim 1$ only.
- Trick: Use three shear operators instead of one rotation.

$$\begin{pmatrix} \cos\phi & \sin\phi \\ -\sin\phi & \cos\phi \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ -\tan\frac{1}{2}\phi & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & \sin\phi \\ 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} 1 & 0 \\ -\tan\frac{1}{2}\phi & 1 \end{pmatrix}$$

- det(D) = 1 exactly for each shear operator, even in floating point precision.
- No long term trend linear trend anymore!

Symplectic integrators are awesome.

REBOUND Demo

REBOUND scalings using a tree

Download and play with REBOUND.

Saturn's Rings

Cassini spacecraft

Credit: JPL/Gordon Morrison

Cassini spacecraft

NASA/JPL/Space Science Institute

Moonlets in Saturn's Rings

Propeller structures in A-ring

Porco et al. 2007, Sremcevic et al. 2007, Tiscareno et al. 2006

Longitude residual

Observational evidence of non-Keplerian motion

Tiscareno et al. 2010

Random walk

Analytic model

Describing evolution in a statistical manner Partly based on Rein & Papaloizou 2009

$$\Delta a = \sqrt{4\frac{Dt}{n^2}}$$
$$\Delta e = \sqrt{2.5\frac{\gamma Dt}{n^2 a^2}}$$

N-body simulations

Measuring random forces or integrating moonlet directly Crida et al 2010, Rein & Papaloizou 2010

Rein & Papaloizou 2010, Crida et al 2010

Random walk

REBOUND code, Rein & Papaloizou 2010, Crida et al 2010

Results from simulations and observations

- Moonlet motion is undergoing a Levy flight.
- Over long time-scales this is just a random walk.
- But what we see within 5 years is a moonlet being kicked once or twice by other large bodies in the ring.
- Leads to constraints about size distribution.

Rein, Chiang & Pan (in prep)

Moonlets in Saturn's Rings show direct evidence of disk satellite interaction.

Gravitational instability in a narrow ring

Gravitational instability in a narrow ring

- First studied by Maxwell 1859
- Idealized setup
- Equal mass, equally spaced particles
- Initially on circular orbits around central object

- Seed perturbations grow if the mass is above a critical value
- Two different modes, depending on particle mass and spacing

Growing epicycles

Longitudinal clumping

Latter, Rein & Ogilvie (submitted)

Latter, Rein & Ogilvie (submitted)

Analytic and numerical growth rates of the GI

Growing epicycles

Longitudinal clumping

Latter, Rein & Ogilvie (submitted)

Long term evolution

- Hot ring or clumps
- Independent of initial mode of the instability
- Determined by coefficient of restitution and particle density

Latter, Rein & Ogilvie (submitted)

Latter, Rein & Ogilvie 2012 is easier to read than Maxwell 1859.

Viscous over-stability in Saturn's rings

Close-up view of the viscous over-stability

Rein & Latter (in prep)

Observations

- Observational evidence for small scale structures
- Typical size ~100m

Rein & Latter (in prep), Thomson 2010

Previous work

- Both analytic calculations and hydrodynamic simulations show non-linear wave-train solutions.
- Rich dynamics with sources and sinks of wave-trains.

Radial coordinate

Numerical simulations with REBOUND

Symplectic Epicycle Integrator

- Fast
- High accuracy
- No long term drifts (important)

Plane-sweep algorithm

- Fast
- O(N) for elongated boxes

Direct particle simulations of Saturn's Rings

- Longest integration time ever done $\!\!\!\!\!*$

- Widest boxes ever done*

* to my knowledge, Rein & Latter (in prep)

Work in progress...

Rein & Latter (in prep)

Our simulations are big enough to directly study the non-linear evolution of the viscous over-stability.

- I. Symplectic integrators are awesome.
- II. Download and play with REBOUND.
- III. Moonlets in Saturn's Rings show direct evidence of disk satellite interaction.
- IV. Latter, Rein & Ogilvie 2012 is easier to read than Maxwell 1859.
- V. Our simulations are big enough to directly study the non-linear evolution of the viscous overstability.