M-GI28 計算科学による惑星形成・進化・環境変動研究の新展開 2018/5/23

какемп JSPS科研費JP15K13417 文部科学省ポスト「京」萌芽的課題3 「太陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変動の解明」

JpGU2018

- RBFを用いた浅水波モデルの
 - 標準実験による検証
 - 前 京都大学防災研究所 榎本剛
 - enomoto.takeshi.3n@kyoto-u.ac.jp @takeshi_enomoto

ME: 最小化エネルギー SH: 球面螺旋

https://github.com/ gradywright/spherepts

 $\mod 2$ = m

Bauer 2000

Tomita et al. 2001

- 球面上の移流: Flyer and Wright (2007)
- 浅水波方程式: Flyer and Wright (2009)
- メッシュフリー・準一様節点⇒長い時間ステップ
- 簡単なアルゴリズムでスペクトル精度
- 局所性⇒エイリアシングやGibbs現象が起きにくい (Fornberg et al. 2008)
- 適合性→複雑形状, 局所高解像度化

RBFの考え方 n $f(\boldsymbol{x}) \quad s(\boldsymbol{x}) = c_j \quad (||\boldsymbol{x})$ j=1 $oldsymbol{x}_j ||)$ $\varepsilon = 1$ *ε* = 2 $\varepsilon = 4$ *ε* = 8 1.5 2.0

RBF: Radial Basis Functions

RBF $\varepsilon = 1$

$f [f_1, f_2, ..., f_n]^{\mathsf{T}}$

 $(||oldsymbol{x}_n \quad oldsymbol{x}_1||) \quad (||oldsymbol{x}_n \quad oldsymbol{x}_2||) \quad ...$

A

内挿行列

$$c [c_1, c_2, ..., c_n]^{\mathsf{T}}$$

f = Ac

(0)

- 単位球の表面積
- 一様な一つの節点の重み
- 重みはRBF内挿行列の列の和

4/n

4

 $w = 4 \frac{A^{-1}e}{e^{T}A^{-1}e} e [1, 1, \cdots, 1]$

 $\frac{\boldsymbol{u}}{t} = (\boldsymbol{u} \cdot \boldsymbol{u}) \boldsymbol{u} \quad f(\boldsymbol{x} \quad \boldsymbol{u}) \quad g \quad h$ $\frac{h}{t} = \cdot (h\boldsymbol{u})$

浅水波モデル

- デカルト座標

微分演算子・速度の時間変化傾向を接平面に投影

 $_k(r(\boldsymbol{x})) = _k(r(\boldsymbol{x}))$

微分演算子

$r(\boldsymbol{x}) = 2(1 \quad \boldsymbol{x}^{\mathsf{T}} \boldsymbol{x}_k)$

$$r(\boldsymbol{x}) = (\boldsymbol{x} \quad \boldsymbol{x}_k) - \frac{k(r(\boldsymbol{x}))}{r(\boldsymbol{x})}$$

- Williamson et al. 1992
- 定常性や山岳の効果,惑星波など7つの実験
- 4次のルンゲクッタ
- 節点数2562(正二十面体の制約)~T51
- Case 5~ 数值拡散

- A^{-1} の固有値は急速に小さくなるので $A^{-1}\underline{u}$ は 低次の固有値を弱く、高次の固有値を強く減衰
- 節点の分布や数, RBFの種類に非依存
- ラプラシアンの次数を考える必要がない。
- どの でも成長しない。

RBFフィルタ

Fornberg and Lehto 2011

Case 3: 地衡流

-0.00018 -0.00012 -6e-05

$n = 2562; \quad t = 24 \min = 4.75$

CONTOUR FROM 2100 TO 2900 BY 100

0.00012 0.00018

6e-05

Case 3: 地衡風

$n = 2562; \quad t = 24 \min = 4.75$

h error

Tomita et al. 2004	2562		1×10-3	
method	no. of nodes (N)	time step (Δt)	relative ℓ_2 error in	
RBF リープフロッグ	784 (28)	$20 \min$	6.32×10^{-6}	
	1849(43)	$12 \min$	1.97×10^{-8}	
	3136(56)	$10 \min$	3.65×10^{-10}	
	4096(64)	$8 \min$	4.72×10^{-11}	
球面調和関数	5041(71)	$6 \min$	6.88×10^{-12}	
SH; Jakob-Chien et al. (1995)	8192(1849)	$20 \min^{*} (3)$	7×10^{-10}	
二重フーリエ	$18\;432\;(4096)$	$15 \min^*$	2.5×10^{-10}	
DF/SHF; Spotz et al. (1998)	2048	$6 \min$	2×10^{-6}	
	8192	$3 \min$	4×10^{-10}	
スペクトル要素	$32\ 768$	$90 \mathrm{s}$	2×10^{-13}	
SE; Taylor <i>et al.</i> (1997)	6144	$90 \mathrm{s}$	8×10^{-7}	
	$24\ 576$	$45 \mathrm{s}$	1×10^{-10}	

2562 Flyer and Wright 2009

*セミインプリシット

SH ε =4 n=1849

Case 5: 山岳を超える剛体流

FT0

CONTOUR FROM 0 TO 1800 BY 200

CONTOUR FROM 9050 TO 10250 BY 50

CONTOUR FROM 9050 TO 10250 BY 50

CONTOUR FROM 9050 TO 10250 BY 50

time h

• 非一様性 最小エネルギー: 「傷」, 球面螺旋: 極域, 正二十面体: 頂点

- 定常性は、スペクトル法には及ばないものの、RBFも高精度
- 現実的な流れでは、RBFはスペクトル法に遜色ない精度
- 正二十面体 渦度や発散の保存性良好

まとめ

RBFの適用可能性

- 領域モデル、局所細分化 (AMR)
- 複雜形状(地形、海洋)
- 深い対流(木星),マントル対流(Wright et al. 2010)