火星大気循環の全球・高解像度・非静力学計算に向けたモデル開発

MGI28-P05 *樫村 博基1、八代 尚2、西澤 誠也2、富田 浩文2、中島 健介3、石渡 正樹4、高橋 芳幸1、林 祥介1 1. 神戸大学/惑星科学研究センター、2. 理化学研究所 計算科学研究センター、3. 九州大学、4. 北海道大学

- 1. 本研究では、水平数キロメートル解像度の全球火星大気計算を、次期大型計算機 ポスト「京」で実施すべく、非静力学全球火星大気モデルを開発している。
- - 2.1. 理想化火星大気力学計算:火星パラメータによる計算の確認
 - 2.2. 火星放射モジュールの移植
 - 2.3. 土壌・地表面フラックス・鉛直拡散フラックス モジュールの移植
 - 3次元計算はこれから。

謝辞:本研究は、文部科学省ポスト「京」萌芽的課題3「太陽系外惑星(第二の地球)の誕生と太陽系内惑星環境変 動の解明」の一環として実施したものです。

_ 要旨

2. 開発は、正二十面体準一様格子の大気大循環モデル SCALE-GM を力学コアとして、既存 の汎惑星大気大循環モデル DCPAM の諸物理過程モジュールを移植する形で進めている。

2.1 理想化火星大気力学計算:火星パラメータによる計算の確認

パラメータ 変更	惑星半径 [km]	自転角速度 [1/s]	重力加速度 [m/s ²]	気体定数 [J/(kg K)]	定圧比熱 [J/(kg K)]	標準地表気圧 [Pa]	
地球	6371	7.29×10-5	9.81	287.0	1004	1.0×10 ⁵	ressure
火星	3389	7.09×10 ⁻⁵	3.72	191.2	764.8	6.1×10 ²	<u>а</u>

時間東西平均温度場 DCPAM

WRF (参照)

2.2 火星放射モジュールの移植

2.3 土壌・地表面フラックス・鉛直拡散フラックス モジュールの移植

[K]

MGI28-P05 火星大気循環の全球・高解像度・非静力学計算に向けたモデル開発

*樫村 博基1、八代 尚2、西澤 誠也2、富田 浩文2、中島 健介3、石渡 正樹4、高橋 芳幸1、林 祥介1 1. 神戸大学/惑星科学研究センター、2. 理化学研究所 計算科学研究センター、3. 九州大学、4. 北海道大学

- 本研究では、水平数キロメートル解像度の全球火星大気計算を、次期大型計算機ポスト「京」で実施すべく、 非静力学全球火星大気モデルを開発している。
- 開発は、正二十面体準一様格子の大気大循環モデル SCALE-GM を力学コアとして、汎惑星大気大循環モデル DCPAM の諸物理過程のモジュールを移植する形で進めている。
- 放射・土壌熱伝導による、大気・土壌の温度変化を計算できるまで進捗した。運動ありの3次元計算はこれから。

1. はじめに

- 火星では数十から数百メートル規模のダストデビ ルから、数十キロメートル規模のローカルダスト ストーム、全球を覆うグローバルダストストーム まで、大小様々な規模の砂嵐が観測されているが、 これらのスケール間の相互作用は未解明である。
- 大気が薄く海がない火星では、昼夜間の寒暖差が 大きく、鉛直対流が卓越すると考えられるが、全 球規模の大気大循環に対するその役割は解明され ていない。
- 静力学平衡&スペクトル変換を利用した「伝統的」 な全球大気モデルの高解像度計算には限界があり、 非静力学の方程式系で計算する、大規模並列計算 に適した全球火星大気モデルが必要である。

2. 火星版 SCALE-GM の開発

- SCALE-GM は、正二十面体準一様格子法(Tomita et al. 2001, 2002)による 地球大気の全球非静力学シミュレーションで実績のある NICAM の力学コアを基 に、より幅広い応用を目指して開発が進められている大気大循環モデルである。
- 我々は、SCALE-GM に、火星大気用のパラメータや放射・地表面過程などの物理 モジュールを組み込んだ火星版 SCALE-GM を開発している。
- 火星大気用物理モジュールの組み込みは、既存の汎惑星大気大循環モデル DCPAM のそれらを移植する形で進めている。(DCPAM は「伝統的」なモデル)

- SCALE-GM : http://www.r-ccs.riken.jp/software_center/jp/software/scale/overview/, https://scale.aics.riken.jp/
- NICAM : Tomita & Satoh (2005), Satoh et al. (2008), Satoh et al. (2014)
- DCPAM : https://www.gfd-dennou.org/library/dcpam/

謝辞:本研究は、文部科学省ポスト「京」萌芽的課題3「太陽系外惑星(第二の地球)の誕生と太陽系内惑星 環境変動の解明」の一環として実施したものです。