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What we did

 N-body simulations starting from planetesimal disk (0.7 AU to 4.0 AU), including the ice line(N~82000).

 Assumed that the largest runaway bodies outside the ice line to grow to 0.1 Earth mass and restarted the simulation.
* Included the effect of the disk gas (gas drag and type-| migration).

« Carried out simulations that the number of bodies increases due to fragmentation.

Result

 The outer protoplanet moves outward and the inner protoplanet moves inward.

« Gas drag suppresses the random velocity increase and the migration continues.
 Type-l migration can be overcome when fragments are included in the simulations.
Discussion

« Dependence of the distance of outward migration depends on the size of the fragments.
Small fragments tend to enhance the outward migration.
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* Include the fragmentation model
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In the case with the fragmentation, the outward migration continues. This phenomenon did not appear using
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Dynamical friction from the fragments seems to damp the ecc.



