Compositional relationships between meteorites and planets

Kevin Righter NASA Johnson Space Center

ASTROMATERIALS RESEARCH & EXPLORATION SCIENCE

Accretion models for terrestrial planets

Can we make planets from meteorites?

Overview

1st lecture – Thursday

- a) Starting materials and conditions Building blocks Physical and timing constraints Thermal constraints
- b) How chondrites are modified Processes (melting, fractionation, residues) Controlling variables – T, P, fO₂, water
- c) Key parameters for defining bulk compositions
- d) Example 1: Vesta

Building blocks

After Ringwood (1977)

From Krot et al. (2003)

Stages in the accretion process

(1) Gravitational collapse of gas and dust.

(2) Formation of rotating nebular disk: gas and dust falling onto the midplane and proto-Sun. Formation of initial millimeter-to centimeter-sized objects from gas/dust aggregates.

From Nichols (2006)

Timescales of accretion process

Hierarchy of materials	mass	<u>timeframe (yrs)</u>
a) gas/dust to planetesimals	10 ¹² -10 ¹⁸ g	~10 ⁵
b) planetesimals to embryos	10 ²⁶ -10 ²⁷ g	~10 ⁶
c) embryos to proto/planets	10^{27} - 10^{28} g	~107

Embryos to solar systems

Results of N-body simulations

From Chambers (2003)

How chondrites are modified

Low temperature and aqueous alteration processes – covered by Adrian and Sasha

Shock processes – Tom Sharp

Igneous processes

- Melting
- Fractionation and accumulation
- Residua

-What evidence is there in the meteorite collections? [compare to Earth]

Melting **Terrestrial basalts and residues**

3 mm

Peridotite (unmelted mantle)

1 mm

Melting on the Earth has many potential mechanisms – current day

- Stress relief
- Convective rise
- Frictional heating (plate tectonics)
- Compositional change (diffusion, volatile addition)
- Radioactive heat

What about asteroids and other planets?

Melting

Meteoritic basalts – eucrites, shergottites, angrites

Melting residua Meteoritic residua – ureilites, lodranites, acapulcoites

Ungrouped ultramafic achondrite

ureilite

Melting residua

Meteoritic residua – ureilites, lodranites, acapulcoites

Meteoritic examples have added complication of metal — metal can be trapped (dihedral angles)

Fractionation and accumulation Terrestrial cumulate – Stillwater Complex, Montana

Cumulate olivine and chromite

Fractionation and accumulation Meteoritic cumulates – eucrites, nahklites, pallasites

Pallasite – olivine orthocumulate

Cumulate eucrite - adcumulate

Nakhlite – clinopyroxene mesocumulate

There is clear evidence for melting in the meteorite record, so what factors are involved?

- Temperature (radioactivity, impacts, gravity)
- Pressure
- Oxygen fugacity (or pressure)
- Water (and other volatiles)

Thermal constraints and heat sources Radioactivity: ²⁶AI, ⁶⁰Fe, other short lived ⁴⁰K, ²³⁸U, ²³⁵U, ²³²Th – long lived

Thermal constraints and heat sources <u>Impacts – material can achieve 10,000 K</u>

Thermal constraints and heat sources Gravitational – once core formation starts it is an "energetic cascade"

Moving metal from the base of a magma ocean through the solid lower mantle to the core will result in a situation with lower potential energy. Energy derived through such a process can cause temperature changes of several hundred to a few thousand K ϵ = thickness of metal layer

 β = initial core radius

From Rubie et al. (2007)

Temperature Heating models in comparison to basaltic phase equilibria

From Ghosh et al. (2006)

Pressure Pressure to core-mantle boundary in planets and mineralogy change with depth

Pressure Understanding of melting at high pressures and temperatures is very limited

From Asahara et al. (2004)

High pressure experiments

NASA-JSC laboratory

0.3 to 3.0 GPa (10 to 100 km depth)

1200 to 2500 °C

ressure Mete Pressure Distril Plate- Upper extraction thrust Hinge support block Extraction pl Extraction Main rar Extraction Ram

Used to study

-Mantle melting -Chondrite phase equilibria -Metal-silicate equilibrium (core formation) -Diffusion of Ru, Ir, Ga, Co, in FeNi metal

Experimental techniques

High pressure experiments

Used to study

-Chondrite phase equilibria (H, E) -Metal-silicate equilibrium (core formation) Au, Pd, Re, Os Pressure: 3.0 to 30.0 GPa Temperature: up to 2800 °C

Schematic diagram for Rockland Research Multi-anvil system

Multi-anvil assemblies

Octahedral pressure medium and tungsten carbide cubes

Pressure module and 6 wedges

Experimental techniques

Pressure calibration by phase bracketing

Run products can be cut and polished and analyzed using EMPA, SIMS, LA-ICP-MS, SEM, etc.

1.5 GPa, 1800 °C, basalt and metal

1 mm

High PT phase diagram for Richardton H5

From Lisa Danielson, Melanie Channon, Josh Garber

High PT phase equilibria of enstatite chondrites

From Sophie Berthet

Ph.D. thesis research

In situ phase equilibria – Argonne National Lab

In situ phase equilibria – Argonne National Lab

Oxygen fugacity (fO₂)

 $2Fe + O_2 = 2FeO$ (solid) (gas) (solid)

 Fugacity is really just pressure (ideal gas has a fugacity = pressure; non-ideal gas has fugacity ≠ pressure)

 The above equilibrium is called a "buffer" – will stay at the same value of fO₂, regardless of how much Fe or FeO is added

Oxygen fugacity Absolute, relative

Oxygen fugacity – oxidized example $2 \operatorname{Fe_3O_4} + \frac{1}{2} \operatorname{O_2} = 3 \operatorname{Fe_2O_3}$

magnetite ilmenite . X900 20µm EET90007

gas

From Righter and Neff (2007)

magnetite

CK chondrite EET 90007

hematite

Oxygen fugacity

Oxygen fugacity varies within chondrite groups by 15 orders of magnitude

From Righter and Neff (2007)

Oxygen fugacity P, fO₂, and C-CO-CO₂ system

Graphite can buffer fO_2 Below metal stability field at low pressures.

And above metal stability at high pressure.

Water Depresses liquidus and solidus

From Abe et al. (2000)

Key parameters in defining bulk composition Oxygen isotopes

Key parameters in defining bulk composition Oxygen isotopes

Differences between Mars, Earth-Moon, angrites and eucrites are small but measurable

From Righter (2007)

Key parameters in defining bulk composition major elements

Key parameters in defining bulk composition

D/H and noble gases for volatile-bearing planets

From Drake and Righter (2002)

Key parameters in defining bulk composition D/H and noble gases for volatile-

bearing planets

Example 1: 4 Vesta (HED parent body)

Enhanced from Hubble Space Telescope imaging – 1995 and 1996

Introduction: What are the HED meteorites ?

eucrite

howardite

diogenite

Vesta/HED link and history

Vesta: oxygen isotopes

Mixtures that satisfy O isotopes

H-CV L-CV LL,L,H-CO

Boesenberg and Delaney (1997)

Major element evolution diagram Equilibrium with later fractionation

From Righter and Drake (1997)

Outstanding problems Volatile element depletion

DAWN mission

May be able to resolve some of these outstanding questions

C/MR² Vesta mantle composition Volatile elements Th, K, U

