Kobe International School of Planetary Sciences: Small Bodies in Planetary Systems 6 December 2006

> Dust Models and Optical Properties Aigen Li

(University of Missouri, Columbia, MO)

Part I: Optics of Dust

- Part II: Interstellar Dust
- Part III: Interstellar, Cometary, Circumstellar Disk Dust Models
 - -Silicate-Graphite-PAH model;
 - -Core-mantle model;
 - Composite model;

Porous aggregate model for cometary dust;

Porous dust model for dust disks;

Part II: Interstellar Dust

The nature of the Milky Way interstellar dust

 – extinction ⇒ dust size;
 – spectral features ⇒ composition;
 – IR emission ⇒ dust size, composition;
 – polarization ⇒ shape: nonspherical;

Milky Way Interstellar Extinction: Grain Size

2 grain populations:

- a < 100 Å;
- a>0.1 µm;
- Characterized by R_V=A_V/E(B-V);
 - dense regions: larger R_v;
 - larger $R_V \rightarrow$ larger grains;
- 2175 Å bump
 - aromatic carbon;
 - small graphitic grains or PAHs;

Interstellar Extinction: SMC/LMC vs. MW

Infrared Emission: Grain Size and Composition

Interstellar Silicates: Amorphous (Li & Draine 2001a)

ultrasmall silicate grains ≤5%;
crystalline silicate (large or small size) ≤5%;

Thermal Equilibrium Temperatures of "Classical" Grains: 15-25K (Li & Draine 2001, ApJ, 554, 778)

Energy balance between absorption and emission \rightarrow "equilibrium" temperature:

$$\int_0^\infty C_{\rm abs}(a,\lambda) c u_\lambda d\lambda = \int_0^\infty C_{\rm abs}(a,\lambda) 4\pi B_\lambda(\bar{T}) d\lambda \quad,$$

 $C_{abs}(a, \lambda) = absorption cross section \leftarrow determined by grain size, composition, geometry$ $<math>B_{\lambda}(T) = Planck$ function, $u_{\lambda} = energy$ density of the radiation field.

> $Q_{\rm abs}(a,\lambda) = {\rm absorption\ efficiency} = C_{\rm abs}(a,\lambda)/\pi a^2,$ $\kappa_{\rm abs}(a,\lambda) = {\rm mass\ absorption\ coefficiency} = 3Q_{\rm abs}(a,\lambda)/(4a\rho),$

Stochastic Heating Nature of Ultrasmall Grains (Li & Draine, ApJ, 554, 778)

PAHs are ubiquitous in Astrophysical Environments !

PAHs are ubiquitous in the interstellar medium

- "Unidentified Infrared" (UIR) bands at 3.3, 6.2, 7.7, 8.6, 11.3µm are ubiquitously seen in interstellar space;
- $\blacksquare \rightarrow$ They are generally attributed to PAHs:
 - 3.3µm: C-H stretching mode;
 - 6.2, 7.7µm: C-C stretching modes;
 - 8.6µm: C-H in-plane bending mode;
 - -11.3, 12.7µm: C-H out-of-plane bending modes;
 - They require [C/H] ~ 60ppm (Li & Draine 2001b);

PAHs are ubiquitous in space (Draine & Li 2006, ApJ, in press)

PAHs in high-redshift galaxies

ULIRGs (Yan et al. 2005)

Absorption Features: Grain Composition

- Silicate dust
 - 9.7 μm: Si-O stretching;
 - 18 µm: O-Si O bending;
 - Amorphous;

Absorption Features: Grain Composition

Ices

- dense regions (A_v>3 mag);
- − H₂O 3.1, 6.0µm;
- CO 4.68µm;
- CO₂ 4.28, 15.2µm;
- CH₃OH 3.54,
 9.75µm;
- H₂CO 5.81µm;
- CH₄ 7.68µm;
- NH₃ 2.97μm;

Absorption Features: Grain Composition

Comparison of the C-H Absorption Features Seen Towards Galactic Center IRS6E and VI Cygni #12

Aliphatic hydrocarbon - 3.4 µm C-H stretching band; - diffuse ISM; - PPN CRL 618; - other galaxies;

Interstellar Scattering

 Albedo a≈0.6;
 Asymmetry factor g≈0.6-0.8;
 2175 Å hump: – no Scattering;

Interstellar Polarization

Interstellar Polarization Features

9.7,18µm silicate: polariz.

- Becklin-Neugebauer object;
- Aitken et al. (1989);
- Greenberg & Li (1996);
- 3.4µm hydrocarbon:
 - Unpolarized (Adamson et al. 1999, Chiar et al. 2006);
- PAHs bands: unpolariz.;
- Far-IR emission: polariz.;
- Ice bands: polarized;
 - 3.1µm H₂O;
 - 4.67µm CO;
 - 4.62µm XCN⁻;

Elemental Depletions

- [X/H]_{gas} <[X/H]_o;
- ≥90% of Si, Mg, Fe and ≥60% of C, O are locked up in dust;
- Dust composition:
 Silicate, carbon

Part III: (1) Interstellar Dust Models Observational constraints wavelength dependent extinction; wavelength dependent polarization; absorption and emission spectra; – cosmic abundance (depletion); 3 key models - core-mantle model; - composite dust model; - silicate-graphite-PAH model;

Core-Mantle Model

Li & Greenberg (1997)

- silicate core;
- carbon mantle;
- PAHs + small graphitic grains;
- dust destruction T_{des}≈1-5 10⁸yrs;
- dust injection
 - τ_{pro}≈2.5 10⁹yrs;
- mantle (accretion; protection);

Core-Mantle Model albedo (Li & Greenberg 1997)

Core-Mantle Model

3.4µm C-H carbon (Greenberg, Li, et al. 1995)

9.7,18µm silicate polarizat. (Greenberg & Li 1996)

Composite Dust Model (Mathis & Whiffen 1989, Mathis 1996)

composite collections of

- small silicates;
- small graphite, amorphous carbon, HAC;
- Vacuum (45%);

Composite Dust Model

- with PAHs included (to explain PAH emission features)
 → too much far-UV extinction;
- emit too much at $\lambda > 100 \mu m$ (Dwek 1997);

Silicate-Graphite-PAH Model

(Li & Draine 2001b, Weingartner & Draine 2001)

Silicate-Graphite-PAH Model albedo (Li & Draine 2001b)

Silicate-Graphite-PAH Model High Galactic Latitude region (Li & Draine 2001b)

Silicate-Graphite-PAH Model 2 Galactic plane regions (Li & Draine 2001b)

Silicate-Graphite-PAH Model SMC Bar (Li & Draine 2002c)

Interstellar Extinction: SMC/LMC vs. MW

Silicate-Graphite-PAH Model: NGC 7331

(Regan et al. 2004, ApJ, Spitzer Special issue)

Silicate-Graphite-PAH Model: NGC 7331

(Smith et al. 2004, ApJ, Spitzer Special issue)

