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Context:
Conventional scenario for planetary system formation:

•region of low mass star formation (Taurus)

•collisional accumulation of terrestrial planets

•formation of giant planets by core accretion

Heretical scenario for planetary system formation:

•region of high (or low) mass star formation (Orion)

•collisional accumulation of terrestrial planets

•formation of giant planets by disk instability

Apply constraints from our Solar System, star-forming 
regions, and extrasolar planetary systems

Conclusions: lists of pros and cons for both scenarios 
and of future observational tests
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brown dwarfs

gas giant planets

Extrasolar Planet Discovery Space



Extrasolar Gas Giant Planet Census:
Frequency 

[15 yrs of observations, A. Hatzes, 2004]

* Approximately 15% of nearby G-type stars have 
gas giant planets with short orbital periods – hot 
and warm Jupiters

* Approximately 25% of nearby G-type stars appear 
to  have gas giant planets with long orbital periods 
– Solar System analogues

* Hence at least 40% of nearby G-type stars appear 
to have gas giant planets inside about 10 AU

* Gas giant planet formation mechanism must be 
relatively efficient and robust
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50 m/s detection 
limit [10 m/s noise 
with S/N=5]

10 m/s detection limit 
[2m/s noise with S/N=5]

RV precision for –1.0 < [Fe/H] < –0.6 stars with high S/N is 5 to 16 m/s (D. Fischer, 2004)



Extrasolar Gas Giant Planet Census: 
Metallicity

* Observational bias in favor of metal-rich host stars 
because of stronger absorption lines, shorter 
integration times, lower velocity residuals 

* No correlation of planet masses with metallicity (N. 
Reid) or of debris disks (G. Bryden)

* Hyades cluster ([Fe/H]=0.13) RV search of 98 
stars found no short period planets (Paulson et al. 
2004), whereas about 10 should have been found

* Nevertheless, there seems to be a correlation with 
the highest host star metallicities, at least for short 
period (P < 3 yrs, a < 2 AU) planets

* Is this caused by formation or by migration?



Jones et al. 2004
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Highest Metallicities Correlation: 
Migration or Formation?

* Higher metallicity higher opacity hotter disk 
midplane higher sound speed (cs ) thicker 
disk (h) higher disk kinematic viscosity (ν = α 
cs h) shorter time scale for Type II inward 
migration more short period giant planets 

* Uncertain magnitude of migration effect, but goes 
in the right direction to explain the correlation

* Migration consistent with absence of short-period 
giants in low-metallicity globular cluster 47 Tuc 

* Migration consistent with long-period pulsar giant 
planet in M4 globular cluster (1/30 solar [Fe/H])



Prediction of a  ‘planet desert’ from 10 to 100 Earth masses and for semi-major axes less 
than 3 AU, based on core accretion models of gas and ice giant planet formation (figure 
from S. Ida and D. N. C. Lin, 2004, ApJ, 604, 388-413). Includes the effects of Type II 
migration, but not Type I or Type III, appropriate for disk instability giants.



Extrasolar Gas Giant Planet Census: 
Low-mass Host Stars

* Most planet-host stars are G-type stars – G-type 
stars have dominated the target lists

* M4 dwarf star GJ876 (0.32 Msun) has two known 
gas giant planets and one sub-Neptune-mass 
planet

* Ongoing radial velocity surveys have evidence for 
at least several more giant planets orbiting M 
dwarfs in a relatively small sample of stars

* While frequency of giant planets around M dwarfs 
is uncertain, it is clearly not zero



Laughlin et al. 2004 core accretion models
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* gas giants
rarely form 
by core accretion
around M dwarfs:
process too slow



Clump formation by disk instability after 445 yrs in a 
0.02 Msun disk orbiting a 0.1 Msun star (Boss 2005).

Jupiter-mass 
clump at 7 AU



Forrest et al. 2004 evidence for rapid gas giant planet formation

CoKu Tau/4



GQ Lup b – 1 Myr-old gas giant planet at 100 AU? (Neuhauser et al. 2005)



Gas Giant Planets in Multiple Star Systems

• Hierarchical triple star systems (planet orbits the single 
member of the triple): 

16 Cygni B – about 850 AU separation
HD 178911 B – about 640 AU separation
HD 41004 A – about 23 AU separation 

• Binary star systems:          
HD 195019 – about 150 AU separation 
HD 114762 – about 130 AU separation
HD 19994 – about 100 AU separation                
Gamma Cephei – about 20 AU separation                 
Gl 86 – about 20 AU separation

[ A total of ~ 15 multiple stars have planets to date (Eggenberger et al.2004)]



Nelson (2000)

Ms= 0.5 Msun
Md= 0.05 Msun
a = 50 AU
e = 0.3



Nelson (2000)



Nelson (2000)
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“Planet
formation is 
unlikely in 
equal-mass 
binary 
systems with 
a = 50 AU”



marginally 
gravitationally 
unstable disk 

Q=1 highly unstable

Q=2 as in Nelson (2000)

Q = cs Ω/(π G σ)



no binary
245 years

20 AU
radius
disk



20 AU
radius
disk

after one
binary
rotation 
period:
239 years

to binary – at apastron

Ms= 1 Msun
Md= 0.09 Msun
a = 50 AU
e = 0.5

^



80 K minimum 

T profile through 
inner clump at 8.4 AU

low density region



Differences between Nelson (2000) and present models

• Nelson (2000) used 
60,000 SPH particles 

• Thin disk so adiabatic 
gradient assumed in 
vertical direction, as if 
cooled by convection

• Surface T > 100 K means 
higher midplane T

• Artificial viscosity 
converts KE into heat in 
shock fronts and 
elsewhere (α = 0.002 to 
0.005)

• Cooling time ~ 40 P

• Present models used over 
1,000,000 grid points

• Fully 3D so vertical 
convection cools disk 
midplane in optically thick 
regions, radiation cools in 
optically thin regions

• Surface T = 50 K means 
lower midplane T

• No artificial viscosity so 
no irreversible heating in 
shock fronts and α =0 
assumed

• Cooling time ~ 1-2 P



Planet Formation in Binary Star Systems?

• Tidal forces from a binary star companion can 
trigger the formation of dense clumps in a 
marginally gravitationally unstable disk

• Convection keeps disk midplanes relatively cool 
• Giant planet formation should proceed in binary 

stars with periastrons as small as ~ 25 AU
• Terrestrial planet formation should occur as well
• Most binary stars should be excellent targets for 

planet hunting – as the RV surveys have found



Saumon & Guillot (2004) core mass constraints based on EOS

dubious EOS

strongly preferred EOS 
(Boriskov et al. 2005)

[envelope]



Saumon & Guillot 2004 core mass constraints based on EOS

[preferred EOS]

[preferred
EOS]

[envelope]



Constraints from the Solar System’s  Gas 
Giant Planets

* Jupiter’s core mass is 3 Earth masses or less, too 
small to initiate dynamic gas accretion (erosion?)

* Saturn’s core mass is about 10 to 20 Earth masses, 
sufficient to initiate dynamic gas accretion

* Envelopes of both planets contain substantial 
amounts of heavy elements

* Envelope enrichments presumably arose from 
ingestion of planetesimals/cometesimals during 
and shortly after the planets formed (multiple 
Comet S/L 9 impacts)

* Saturn’s core is more massive than Jupiter’s, yet it 
did not erode or become the more massive planet



Inaba, Wetherill, & Ikoma (2003) core accretion model

Critical mass for 
onset of gas accretion

* first model which 
included effects 
of planetesimal 
fragmentation and 
loss by orbital 
migration as well
as capture by 
protoplanet’s gas
envelope
* 21 Earth-mass core 
forms at 5.2 AU in 
3.8 Myr
* no Saturn formed
* disk mass = 0.08 
solar masses 



f=0.03

f=0.001

final

core 

total

Alibert et al. (2005):
* Migration of cores 
included to speed 
planet growth
* Viscous alpha
disk evolution  
* Type I migration 
rate slowed by 
arbitrary factor f
* Planetesimal
migration neglected
* Monarchical 
growth of cores
* Final Saturn core 
mass  about the same 
as Jupiter’s

final planetesimal disk

Jupiter



Gl 436’s planet with a minimum mass of 21 Earth masses



55 Cancri’s fourth planet with a minimum mass of 14 Earth masses



Discovery space with latest discoveries addedDiscovery space with Neptune-mass planets

prior lowest m sin i



Neptune-mass, but what composition?

[Need to discover 10 or more so that at least one will transit its star]

-mass



Discovery space with latest discoveries addedDiscovery space with Neptune-mass planets and their siblings

Mu Ara

55 Cnc

Gl 876

Gl 436



Wetherill (1996)

1 Earth mass 

Assuming surface density proportional to 1/radius, rock surface density of 9.3 g cm-2 at 
1 AU should be increased  by a factor of about 7 to account for rock/ice surface density 
needed at 5 AU of 25 g cm-2 to form Jupiter by core accretion (Inaba et al. 2003)

3 Earth masses 

Since mass of the terrestrial planets is roughly proportional to the surface density of 
solids, raising the solid surface density by a factor of  about 7 should result in the 
formation of rocky planets with masses as high as about 21 Earth masses



Core Accretion Mechanism
• Pro:
• Leads to large core mass, as in 

Saturn
• Higher metallicity may speed 

growth of core
• Based on process of collisional

accumulation, same as for the 
terrestrial planets

• Does not require external UV 
flux, so works in Taurus

• Con:
• Jupiter’s core mass is too small
• Higher metallicity makes even 

larger mass cores 
• Saturn should be largest planet 
• No Saturn in Inaba et al. (2003) 
• If gas disks dissipate before 

critical core mass reached 
“failed Jupiters” are usual result

• Cannot form gas giant planets 
for M dwarfs, low metallicity
stars (M4), or form planets 
rapidly (CoKu Tau/4? GQ Lup?)

• Loss of growing cores by Type I 
migration prior to gap formation

• Needs disk mass high enough to 
be gravitationally unstable

• No in situ ice giant formation



Disk Instability Mechanism
• Pro:
• May explain core masses, bulk 

compositions, and radial ordering 
of gas and ice giant planets in 
Solar System

• Requires disk mass no more than 
that assumed by core accretion

• Forms gas giants in either metal-
rich or metal-poor disks (M4)

• Clumps form quickly (CoKu
Tau/4? GQ Lup?) and efficiently 
even in short-lived disks 

• Appears to work for M dwarfs
• Sidesteps Type I (and III) orbital 

migration danger
• Works in Taurus or Orion, 

implying Solar System analogues 
are common 

• Con:
• Might require a trigger 

(magnetically dead zone, 
episodic infall, binary 
companion, or close protostar
encounter)

• Clump survival uncertain: need 
for models with detailed disk   
thermodynamics and higher 
spatial resolution (AMR)

• Requires large UV dose to
make ice giant planets – in 
Taurus would make only gas 
giant planets



Future Observational Tests

• RV searches for long period Jupiters around G, K, M dwarfs 
(Geneva, California/Carnegie, Texas, … groups) 

• Astrometric search for long period Jupiters around late-M, L, 
T dwarfs (Carnegie group/Las Campanas)

• RV search for long period Jupiters around low metallicity
stars (CfA group/Keck HIRES)

• RV and transit searches for “hot Neptunes” [failed cores 
with lower mean density than “hot Earths”] (ground-based,
Corot, Kepler) 

• Determine epoch of giant planet formation from disk gaps or
astrometric wobble of YSOs (SST, ALMA, SIM)

• Planetary system architectures as f(r): terrestrial - gas - ice  
Solar-System-like order or … (SIM, TPF-C, TPF-I/Darwin)

• Jupiter/Saturn core masses (Juno mission to Jupiter)
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