CPS seminar, August 27, 2012

Modeling of Jupiter and Saturn Auroral Emissions

Chihiro Tao (ISAS/JAXA)

Co-authors : Sarah V. Badman, Masaki Fujimoto (ISAS/JAXA), Takeru Uno (Tohoku Univ.)

Introduction

垰千尋 (Chihiro Tao)

高知県生まれ、愛知県豊橋市(~高校)育ち 2000.4-東北大学理学部→大学院理学研究科 修士・博士 (福西教授・笠羽教授)

2009.4-2010.3 JST/CREST研究員(九大 田中高史教授)@東北大 2010.4- ISAS/JAXA プロジェクト研究員

研究テーマ 太陽風データ同化研究 * (* at ISAS) 木星・土星オーロラ発光モデル * 木星超高層モデルによるオーロラ形成と多圏間角運動量輸送 木星磁気圏の太陽風応答 (太陽風1次元モデル@木星・土星

http://sprg.isas.jaxa.jp/researchTeam/spacePlasma/staff/tao/)

Contents

1. Introduction : Jupiter & Saturn, UV & IR aurora, recent obs.

2. Model

- 3. Results : UV & IR emissions
- 4. Discussion : Jupiter-Saturn comparison, Saturn polar IR
- 5. Application 1 : Time variation (Jupiter polar UV/IR)
- 6. Application 2 : Auroral electron energy estimation from IR

7. Conclusion

Introduction

http://www.isas.jaxa.jp/j/japan_s_history/chapter06/05/01.shtml

Investigation Methods at Earth Ground-based observation aurora, magnetic field variation In-situ observation (magnetosphere etc.) plasma, magnetic/electric fields Remote-sensing observation aurora/plasma/ENA imaging, radio emission

at outer planetary magnetosphere with different environment

Introduction : Jupiter/Saturn 1

Table. Parameters.

	Earth	Jupiter	Saturn
radius [km]	6370	71,492	60,268
mag. pause [radius]	10	50-100	20
rotation period [h]	24	9.9	10.7
mag. moment/field [G]	1/0.3	20,000/4	580/ <mark>0.2</mark>
distance from Sun [AU]	1	5.2	9.6
SW travel time [min.]	3	200	50
ave. aurora [kR]	1-100	10-1000	1-100
power [W]	1-100×10 ⁹	1-10×10 ¹²	1-10×10 ¹¹

Jupiter : Galileo (1996-2003), Pioneer, Voyager, Ulysses, Cassini, New Horrizon, ...

Saturn : Cassini (2004-), Pioneer, Voyager, ...

Introduction : Jupiter/Saturn 2

Fig. Saturn's (top) magnetosphere [after Arridge et al., 2008] and (bottom) ionosphere/thermosphere.

Intro.: Aurora at Outer Planets

Aurora : energy release process

-activities of source magnetosphere and magnetosphere-ionosphere system -atmospheric condition

Auroral provides global feature and process in the system.

(moon footprint, reconnection point, ...)

Ultraviolet (UV) & Infrared (IR) aurorae reflect different processes.

Intro.: UV and IR Emissions

Electron transition of H and H₂ excited directly by collision with high energy electron

Hydrocarbon (HC) molecules in low altitude absorb short UV wavelength

Gérard and Sigh [1982] Saturn • Jupiter Gérard et al. [2009] Saturn Change of vibrational and rotational states of H_3^+ excited by background <u>temperature</u> (thermal excitation)

 H_3^+ is produced by auroral electron $H_2 + e^{-*} \rightarrow H_2^+ + 2 e^{-}$, $H_2^+ + H_2 \rightarrow H_3^+ + H_3^-$

Melin et al. [2007, 2005] Jupiter, Saturn (H₃⁺ & intensity) Kim et al.[1994] Perry et al.[1999] Jupiter (ion chemistry)

Grodent et al. [2001] Jupiter's UV&IR emission profile

Our model : Jupiter & Saturn's UV & IR emission profile to compare

Intro.: Obs. Characteristics (Saturn)

<Saturn obs.>

Polar region

UV : very low, IR : varies [Stallard et al., 2008] UV&IR difference is larger than MO [Melin et al., 2012] What causes "IR & less UV?"

cf. for main oval, similar morphology and location in statistical obs. [e.g., Badman et al., 2011]

UV(H)

 $UV(H_2)$

Fig. Simultaneous obs by Cassini [Melin et al., 2011].

IR

UV

Fig. Saturn UV aurora [Clarke et al., 2005] and IR polar event [Badman et al., 2011].

Intro.: Obs. Characteristics (Jupiter)

UV

Fig. Jupiter UV (\uparrow) [Grodent et al., 2003] and IR (\rightarrow) obs. [Satoh and Connerney, 1999]

Fig. Jupiter UV & IR [Clarke et al., 2004]

<Saturn obs.> Polar region

UV : very low, IR : varies [Stallard et al., 2008] UV&IR difference is larger than MO [Melin et al., 2012] What causes "IR & less UV?"

<Jupiter simultaneous obs.> [Clarke et al., 2004] along the main oval UV & IR relation varies <u>Io footprint & tail</u> UV : comparable to that of the main oval IR : lower than most of the main oval

Equatorward of the main oval

UV : appear, IR : disappear What condition provides "UV & less IR"?

Polar region

different features less differences between Jovian UV/IR than Saturn? time variation?

Purpose & Approach

What UV & IR simultaneous obs. tell us?
 →Simultaneous estimation of UV & IR emissions is essential.

Jupiter & Saturn environment (e.g., atmosphere, dynamics etc.) and observed aurorae have similarity and difference \rightarrow Unique opportunity for comparison.

[Goal] Understand planetary environment from the UV/IR emissions at Jupiter/Saturn [Approach] Develop a model to investigate their dependence on incident electron energy and the atmospheric temperature [Application] polar emissions (IR enhancement at Saturn & similarity at Jupiter)

Model : Electron Precipitation

We use the parameterization providing ionization and excitation profiles based on the results by Monte Carlo simulation[Hiraki and Tao, 2008]. This is applicable to ambient H_2 atmosphere.

This provides altitude profiles of ionization and excitation rates momentary.

Fig. Altitude profiles of ionization rate for Jupiter (left) and Saturn (right).

Model: UV Estimation

Transmitted spectrum is obtained as follows

$$I_{\rm obs}(\lambda) = I_0(\lambda) \exp\left(-\int_z \sum_s \sigma_{\rm CH_s} N_{\rm CH_s}(z) dz\right)$$

$$I_0: \text{ original emission intensity}$$

$$N_{\rm CH_s}: \text{ density of HCs molecule}$$

$$\sigma_{\rm CH_s}: \text{ absorption cross section}$$

$$[Parkinson et al., 2006]$$

UV emission rate is obtained as altitude integration of I_{obs} .

Model : IR Estimation

lon chemistry diffusive $H^+ \& H_3^+$ including H₂O influx (for Saturn) and H_{2} vibrational states.

IR emission intensity

 $I_{\rm LTE}(\omega_{\rm if},z) = \eta(z) N_{\rm H^+_{\rm T}} g(2J+1) hc \omega_{\rm if} A_{\rm if} \exp(-E_{\rm f}/kT)/Q(T)$ vibrational excited

H₂O⁺

+2(v≥4)

H₂O

H⁺

H₂ etc.

 I_{LTE} : emission intensity [W/m³], ω_{if} wave length [/m], H₂⁺ density $N_{\rm H^{+}_{3}}$: $\rm H_{3}^{+}$ density [/m³], $\,g$: nuclear spin weight, J: rotational guantum number of the upper level of transition,

h : Prank constant 6.61x10⁻³⁴ [J s], c : 3x10⁸ [m/s], A_{if} : Einstein coefficient [/s]

 $E_{\rm f}$: Energy of upper level of transition [J], k : Boltzmann constant 1.38 x 10⁻²³ [J/K]

T: temperature [K], *Q*: Partition function $Q = \sum_{i} (2J+1)g_i \exp(-E_i/kT)$

[Neals and Tannyson, 1995].

LTE ratio $\eta(z)$ vibrational density calc. [Oka and Epp, 2004; Melin et al., 2005] $\frac{dn_{v}}{dt} = \sum_{v'} \left[A_{vv'} n_{v'} - A_{v'v} n_{v} \right] + \sum_{v'} \left[k_{vv'} n_{v'} - k_{v'v} n_{v} \right] n_{\mathrm{H}_{2}} = 0$ n_{v} : H₃⁺ density in v state, n_{H_2} : H₂ density $A_{v,v'}, k_{v,v'}$:Einstein & collision coefficient (v \rightarrow v')

 C_4H_n

 C_2H_2

 C_2H_2

+ recombination

 C_2H_2

CH

C₂H

 $C_2H_5^+$

 C_2H_3

 $C_{2}H_{2}^{+}$

 C_2H_2

CH₅+

CH.

Fig. ion chemistry

CH.

 H_2 hv, electron

 $H_2 C_2 H$

Results : Altitude Profiles

Fig. (a) Ion density and (b) emission rate profiles for Saturn.

Results : UV&IR Dependences

Jupiter case

→ variation of UV/
 IR ratio for Jupiter
 seems smaller than
 that for Saturn
 → similar UV & IR
 emission at Jupiter
 than Saturn

Fig. (a) UV & (b) IR ratio to 10 keV & 0.15 μ A/m² case, (c) required temperature decrease/increase to compensate for the IR variation at Jupiter and Saturn.

16

Discussion : Jupiter-Saturn Comparison

(i) Dependence of IR emission on atmospheric temperature is larger at Saturn (10³) than Jupiter (10)

- ightarrow Jupiter with 300-820 K shows large IR variation
- (ii) Slope of IR around 1 keV is larger at Jupiter
- \rightarrow temp. and H₂O effect

Fig. Dependence check : (a) emission vs temperature at Jupiter and (b) emission vs electron energy at Saturn.

18

17

Discussion : Saturn Polar IR (1/2)

Consider intensity ratio :

FAC [µA/m²]

0.1

0.01

0.00

0.01

0.01

10-3

0.1

<IR> (main oval) : (polar event [Stallard et al., 2008]) = 1 : 1 $\langle UV \rangle$ (main oval $\sim 10s \text{ kR}$) : (polar emission $\langle 1 \text{ kR} \rangle$) = 1 : $\langle 0.1 \rangle$

To obtain these intensities required either

10

energy [keV]

100

->1) small electron flux in open region and >100s K temperature enhancement 2) intense electron flux and a few 10s K temperature enhancement

0.1

0.01

0.00

0.01

AC [µA

0.1

0.01

0.001

0.01

0.1

Fig. (a) UV & (b) IR ratio to 10 keV & 0.15 μ A/m² case, (c) required temperature decrease/increase to compensate for the IR variation at Saturn.

0.1

0.1

10

energy [keV]

100

Fig. UV co-lat. profile [Badman et al., 2006]

2007

100

10

energy [keV]

Fig. IR polar event [Badman et al., 2011]

Discussion : Saturn Polar IR (2/2)

<u>Comparison with observations at Earth</u>: "Polar rain" aurora [Zhang et al., 2007] flux :0.2–0.9 erg/s/cm² mean E: 0.6–1.6 keV

x 0.01 ("."@Saturn 9.6 AU) -> 0.002–0.01 erg/s/cm² = 0.002–0.01 μ A/m² & 1 keV -> 100 K enhancement would provide polar IR emission of intensity equal to that of the main oval.

Fig. Required temperature decrease/increase to compensate for the IR variation at Saturn.

Fig. Earth's polar rain aurora and ET diagram [Zhang et al., 2007]

App1. UV Quasi-Periodic Emission

Fig. Setting of auroral electron (a) energy and (b) number flux for test the polar auroral variation and (c) estimated UV and IR intensity variations for constant energy with variable flux (solid) and for variable energy with constant flux (dot-dashed and dotted) cases.

App2. Ele. Energy Estimation using IR

At high altitude (small H₂ density) → small vibrationally excited H₃⁺ = "non-LTE" effect

Since this effect depends on H_2 density & IR lines, comparison between IR lines affected by large and small non-LTE effect would tell us altitude they emit \rightarrow Auroral electron energy estimation!

ex. IR ratios [1.16,2.41,1.67] (60 keV, 1200 K case)
→ Energy & temperature is determined using at least three line ratios

→If small error observation is achieved, auroral electron energy and temperature are determined accurately from IR lines.

0.1

energy [keV] Fig. Example of estimation including error.

10

100

1000

Summary

We have developed a new UV and IR emission model for the outer planets :
1) Different UV/IR dependences are seen between Jupiter and Saturn
Increase of IR due to electron energy is greater at Jupiter than at Saturn.
Temperature sensitivity of IR is greater at Saturn than at Jupiter.
→ caused by differences in the atmospheric temperature and H₂O existence
2) Polar aurora might reflect these characteristics
Saturn IR polar event & Jupiter's coexistent UV&IR emission in pole

3) Time variation of IR-UV correlation depends on ele. energy and time scale

•IR variations due to <10 keV ele. energy case correlate with UV with ~100 sec time lag. IR due to >10 keV modulations vary differently and are sometimes inversely correlated with UV.

[Tao et al., ISPS proceeding paper, accepted]

4) We propose energy estimation method using several IR lines
 Since the departure from LTE varies with vibrational levels and altitude, measurements of the relative emission line intensities reveals the altitude of emission and hence the electron energy.
 [Tao et al., Icarus, in press]

Multi-wavelength auroral observation : at Saturn (Cassini), at Jupiter (Juno, Juice, ...) To maximize insight: compare model with obs. and expand other wavelength