Formation of chondrule dust rims and their influence on the formation of chondrites

24.04.2012 Eike Beitz & Jürgen Blum

TU Braunschweig – Institut für Geophysik und extraterrestrische Physik

Institut für Geophysik und extraterrestrische Physik

Outline

- Introduction / Motivation
- Experiments
 - Coating Experiments Cold
 - Coating Experiments Hot
 - Collisions Experiments
 - Impact Experiments
- Conclusions

Meteorites

•86.2 % of the meteorites are undifferentiated and are called chondrites

 these are unmolten witnesses of the early stages of planet formation

consisting of chondrules (0 - 80 vol.%), matrix (0 - 100 vol.%), an opage phase (0 -70 vol.%), and CAIs (up to 9 vol.%)

 formed 2.5 Myrs afer the CAIs over a time span of 2 Myrs

İnstitut für Geophysik und extraterrestrische Physik

Type: CM2 (Murchison)

Fall : 1969

Age : 4.567 billion years (Bouvier et al. 2007)

Properties of chondrule fine grained rims

- Dusty envelope surrounding chondrules
 - All larger particles are covered with dust and more than 50 vol.% of not chondrule fraction are rim material.
- Low porosity (Wasson et al. 2005) ~ 6-15%
- Chondrule, rims, and matrix consist of similar material (Palme et al. 1993)
- Volatile elements that are depleted in chondrules are enriched in rim and matrix
- Rim thickness proportional to chondrule size (Metzler et al. 1992)

top: Metzler et al. 1992 bottom: Trigo-Rodriguez et al. 2006

Chondrule - Textures

Institut für Geophysik und extraterrestrische Physik

Scott & Krot 2005 Tieschitz ordinary chondrite H3

Chondrule - Sketch

Institut für Geophysik und extraterrestrische Physik

after: Scott & Krot 2005

Formation Theories on Chondrule Rims

Accretion of dust rims in solar nebula

- Cold accretion
- Hot accretion

- Dynamical parent-body compression
- High-velocity

A combination of both hypothesis?

Coating Experiments Cold

Particle Coating - Cold

(referring to nebular accretion)

Accretion of μ m-sized dust on chondrule analogs – formation of fluffy accretionary rims in the laboratory

Institut für Geophysik und extraterrestrische Physik

Beitz et al. 2012

Results - Particle Coating

Coating Experiments Hot

Particle Coating - Hot

Institut für Geophysik und extraterrestrische

Physik

Colaboration with A. Pack and R. Mathieu U Göttingen and Dominik C. Hezel U Köln

Beitz et al. submitted

Sharp Boundary between Chondrule and Rim

Institut für Geophysik und extraterrestrische Physik

Beitz et al. submitted

Temperature Profiles of Chondrule Formation Processes

 Chondrules are formed by an 2000 energetic process (a) ~ Tlig nebula shock waves 1500 accretion shocks $T_{post} = 1143K$ $\mathbf{\Sigma}$ • x- wind 1000 nebula lightning impact melting 500 magnetic flares $T_{pre} = 300K$ \bullet 10 20 30 40 50 -10 0t(hr)

Morris et al. 2010

Temperature Profile of Shock Waves

t [h]

Temperature Profile of Shock Waves

IGEP TU Braunschweig

Temperature Profile of Shock Waves

IGEP TU Braunschweig

Size Distribution of Milled San Carlos Olivine

- evaporation of dust grains
- IGEP TU Braunschweig
- larger particles are unlikely to stick

Size Separation Corresponds to CM2 Chondrites

50µm

Metzler et al. 1992

Institut für Geophysik und extraterrestrische Physik

Collision Experiments

Multiple-Collision Experiments

- MEDEA setup on a drop-tower campaign in Bremen
- low-velocity multiple collision experiment
- coated glass beads with different rim morphologies
- mixtures of dust agglomerates and glass beads
- artificial chondrules

Institut für Geophysik und extraterrestrische Physik

Multiple-Collision Experiments

1 cm/s

2.7 cm/s

Institut für Geophysik und extraterrestrische Physik

Weidling et al. 2012

Multiple-Collision Experiments

2 mm glass beads with dust aggregates of the same size

Beitz et al. 2012

Chondrite Formation

Compaction of Chondrites

Beitz et al. submitted

Impact Experiments

Impact Experiments

Glass bead Experiments - fast

IGEP TU Braunschweig

Institut für Geophysik und extraterrestrische Physik

v ~ 450 m/s; 50 glass beads

number of particles

High Velocity Impact Experiments (last week)

Institut für Geophysik und extraterrestrische Physik

High Velocity Impact Experiments (last week)

High Velocity Impact Experiments (last week)

Conclusion

cold

hot

temperature profile

Technische Universität Braunschweig

Thank You !

IGEP TU Braunschweig