SiO2ガラスの超高圧下における振る舞い

佐藤友子

広島大学 大学院理学研究科 地球惑星システム学専攻

2012. 1. 18 CPSセミナー

II. SiO₂ガラスの構造測定

III. SiO₂ガラスの密度測定

IV. SiO₂ガラスの降伏強度測定

- V. He中でのSiO₂ガラスの異常な振る舞い
- VI. まとめ

マントル中のメルト(マグマ)

非晶質(ガラス・液体)とは

from textbook by Y. Waseda

マントルの構成物質の相転移

パイロライト(pyrolite)組成 by Ringwood

非晶質とは

結晶 :長距離秩序をもつ原子配列 非晶質:長距離秩序をもたない原子配列

SiO₂ガラスの重要性

·凝縮系物理学 ·材料科学 ·地球科学

SiO2の相図

高圧下における非晶質-非晶質相転移 ・リン

高圧下における非晶質-非晶質相転移 ・アモルファス氷

http://www.nims.go.jp/water/j_index.html

"polyamorphism"

SiO2の相図

SiO2ガラスに関する過去の研究

20GPa以上の圧力領域における研究

	手法	最高圧力	結果
Hemley et al. (1986)	Raman scattering	40 GPa	20 GPa以上で4 6配位の相転移
Williams and Jeanloz (1988)	Infrared absorption	40 GPa	20 GPa以上で4 6配位の相転移
Meade and Jeanloz (1988)	Yield strength	80 GPa	25GPa以上で大きな変化がおこる
Meade et al. (1992)	X-ray diffraction	40 GPa	8-28GPaの間で4 6配位の相転移が始まる
Zha et al. (1994)	Brillouin scattering	60 GPa	12-23GPaの間で大きな変化がおこる
Inamura et al. (2004)	X-ray diffraction	20 GPa	20GPaまでは4配位のまま
Lin et al. (2007)	X-ray Raman scattering	50 GPa	10-20GPaで4 6配位の相転移
Fukui et al. (2008)	X-ray Raman scattering	70 GPa	70GPaまで6配位にはならない
Murakami and Bass (2009)	Brillouin scattering	200 GPa	40 GPaから140 GPaまで6配位
Benmore et al. (2010)	X-ray diffraction	40 GPa	15~40 GPaで4 6配位の相転移

ダイヤモンドアンビル装置 (DAC) と放射光の組み合わせを用いた 非晶質を対象とする高圧下その場実験技術の開発

- ・c-BNガスケット (Funamori & Sato, RSI, 2008)
- ・X線回折法による高圧下その場構造測定 (Sato et al., RSI, 2010)
- ・X線吸収法による高圧下その場密度測定 (Sato & Funamori, RSI, 2008)

c-BNガスケット

Funamori and Sato ,RSI, 2008

II. SiO₂ガラスの構造測定

III. SiO₂ガラスの密度測定

IV. SiO₂ガラスの降伏強度測定

V. He中でのSiO₂ガラスの異常な振る舞い

VI. まとめ

II. 構造測定

<u>実験概要</u>

- ·白色X線によるX線回折法
- E= 20~100 keV
- · BL-14C2 (Photon Factory)
- ・ 30µm-10mm^t WCコリメータ
- ・スリット系
- ·100GPaまでの測定

II. 構造測定

実験概要

FIG. 1. (Color online) Schematic illustrations of the entrance collimator. A semicircular groove of 30 μ m in diameter was carved on a tungsten carbide plate of 20 mm length precisely parallel to the AA plane (reference plane). To make a hole of 30 μ m in diameter and 10 mm in thickness, this plate was cut off in the middle, and the half plates were fixed in the holder which was machined to align the reference plane precisely (indicated by the arrow). The hole can be used to reduce the size of the incident x-ray beam.

SiO₂ガラスのS(Q)とg(r)

II. 構造測定

20-35 GPa: 4配位から6配位への構造変化 ~100 GPa: 6配位の構造を保つ

Sato and Funamori, PRB, 2010

1. はじめに II. SiO₂ガラスの構造測定 III. SiO₂ガラスの密度測定 IV. SiO,ガラスの降伏強度測定 V. He中でのSiO,ガラスの異常な振る舞い VI. まとめ

Ⅲ. 密度測定

II. SiO₂ガラスの構造測定

III. SiO₂ガラスの密度測定

IV. SiO₂ガラスの降伏強度測定

V. He中でのSiO₂ガラスの異常な振る舞い

VI. まとめ

V. He中での振る舞い

He中でのSiO₂ガラスの振る舞い

SiO2ガラスの体積の圧力変化

Heの溶解量の最小値の見積もり

X線回折パターン

FSDPの位置の圧力変化

V. He中での振る舞い

V. He中での振る舞い

II. SiO₂ガラスの構造測定

III. SiO₂ガラスの密度測定

IV. SiO₂ガラスの降伏強度測定

V. He中でのSiO₂ガラスの異常な振る舞い

VI. まとめ

II. SiO₂ガラスの構造測定

III. SiO₂ガラスの密度測定

IV. SiO₂ガラスの降伏強度測定

V. He中でのSiO₂ガラスの異常な振る舞い

VI. まとめ

SiO₂ガラスの高圧下における振る舞い

- ·20-35 GPaで4配位から6配位への構造変化が起こる
- ・4配位の構造および構造変化中は高い圧縮率を示す
- ・6配位の構造は少なくとも100GPaまで続き、低い圧縮率を示す ・6配位の構造は、高い降伏強度を持つ可能性がある

He中でのSiO₂ガラスの振る舞い

·He中では圧縮率が大きく低下

·高圧下では大量のHeがSiO2ガラスの空隙中に入り込む

