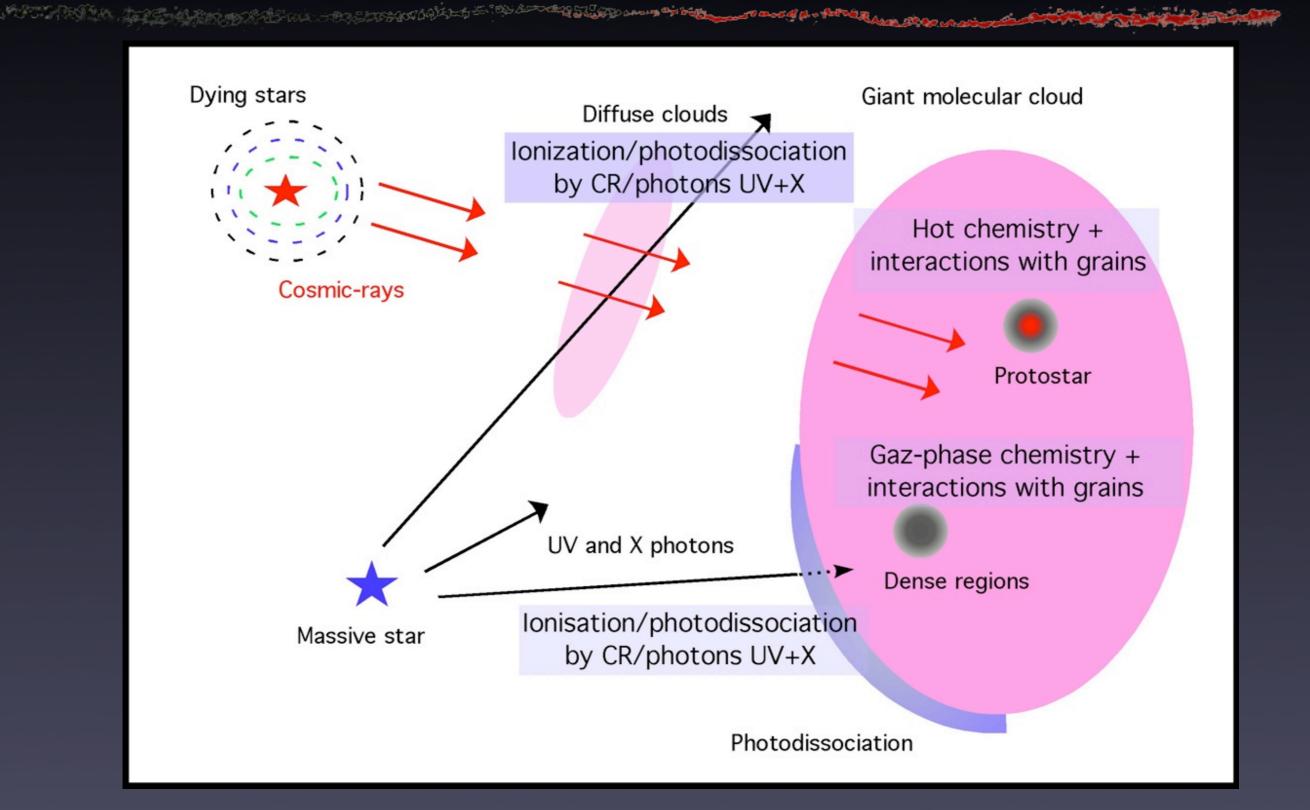

Improving the quality of chemical model predictions for the interstellar medium

and the second of the second second second


Sand Britan Ball Commence Constant Alter to Sa

Valentine Wakelam Laboratoire d'Astrophysique de Bordeaux Bordeaux University / OASU / CNRS France

CN CO CO ⁺ CS ⁺ OC ⁺ ₂ O ₂ S	C ₃ S C ₂ H ₂ NH ₃ HCCN HCNH ⁺ HNCO HNCS HOCO ⁺	H_2CCN CH_4 HC_3N HC2NC HCOOH H2CNH H2C2O	$HC_{2}CHO$ $NH_{2}CHO$ $C_{5}N$ $I-HC_{4}H$ (?)		$I-H\overline{C}_{6}H(?)$ $CH_{2}CHCHO$ $CH_{2}CCHCN$	HC_7N C_8H $CH_3C(O)NH_2$ (?) C_8H^-	CH ₃ CH ₂ CHO	
NO IgCN ₂H⁺ 2O aCN ℃S	$H_2^{-}CN$ H_2CS H_3O^+ $c-SiC_3$ CH_3^* C_3N^-	HNC₃ SiH₄	$c-H_2C_3O$ $H_2CCNH (?)$		12 atoms C ₆ H ₆ (?) C ₂ H ₅ OCH ₃ (?	')	13 atoms HC ₁₁ N	
SiC_2 O_2 H_2 $_3^+$ $_2D+$, HD_2+ iCN INC iNC iCP iCP iCP	Mass				ense cloud	UBLESSTERT	olved star	
	CN CO CO^+ CS^+ OC^+ O S NC OC^-	$CN \qquad C_2H_2$ $CO \qquad NH_3$ $CO^+ \qquad HCCN$ $CS^+ \qquad HCNH^+$ $CC^+ \qquad HNCO$ $O \qquad HNCS$ $S \qquad HOCO^+$ $NC \qquad H_2CO$ $NO \qquad H_2CN$ $GCN \qquad H_2CS$ $GNC \qquad H_3O^+$ $H^+ \qquad C-SiC_3$ $O \qquad CH_3^*$ $ACN \qquad C_3N^-$ $HCNO$ D_2 $SiC_2 \qquad D_2$ $D_2 \qquad HD_2^+$ $D+, HD_2^+$ CN NC NC DP MCS	CN C_2H_2 H_2CCN CO NH_3 CH_4 CO H_4 CO $HCON$ HC_3N CS $HCNH^+$ $HC2NC$ CC $HCOOH$ O $HNCS$ $H2CNH$ S $HOCO^+$ $H2C2O$ NC H_2CO $H2NCN$ NO H_2CN HNC_3 GCN H_2CS SiH_4 PACH H^-CS_3 C_4H^- CO CH_3^* $CNHCO$ CO C_3N^- CS $HCNO$ CS $HCNO$ CP D_2^+ HD_2^+ CN NC NC NC NC NC NC NC N	$ \begin{array}{c} CN & C_2H_2 & H_2CCN & CH_3OH \\ CO & NH_3 & CH_4 & CH_3SH \\ CO^+ & HCCN & HC_3N & HC_3NH+ \\ CS^+ & HCNH^+ & HC2NC & HC_2CHO \\ OC^+ & HNCO & HCOOH & NH_2CHO \\ O & HNCS & H2CNH & C_5N \\ S & HOCO^+ & H2C2O & I-HC_4H (?) \\ NC & H_2CO & H2NCN & I-HC_4N \\ NO & H_2CN & HNC_3 & c-H_2C_3O \\ PCN & H_2CS & SiH_4 & H_2CCNH (?) \\ PONC & H_3O^+ & H_2COH^+ & C_5N^- \\ H^+ & c-SiC_3 & C_4H^- \\ CO & CH_3^* & CNHCO \\ PCN & HCNO \\ PCN & PCN \\ PCN$	$ \begin{array}{cccccc} CN & C_2H_2 & H_2CCN & CH_3OH & CH_3NH_2 \\ CO & NH_3 & CH_4 & CH_3SH & c-C_2H_4O \\ CO^+ & HCCN & HC_3N & HC_3NH+ & H_2CCHOH \\ CS^+ & HCNH^+ & HC2NC & HC_2CHO & C_6H^- \\ \end{array} \\ \begin{array}{ccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

The chemistry of the interstellar medium

Importance of chemical composition

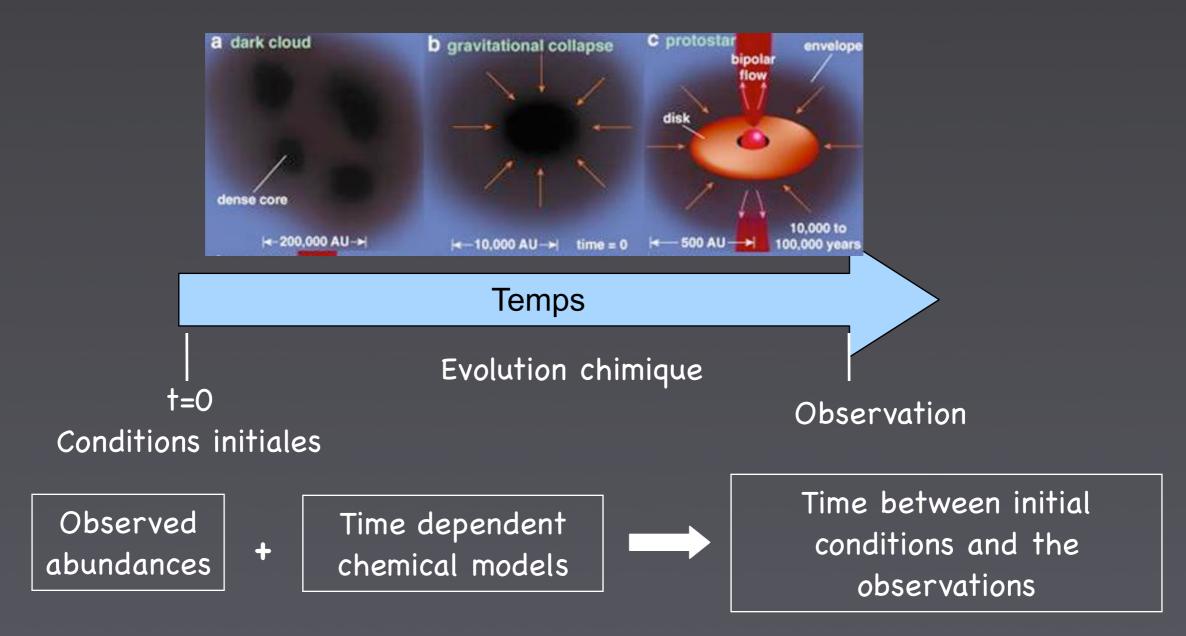
Parent Molecular Cloud ~10⁶yr Start of the collapse t=0yr Class 0 Submilliter protostar ~10⁴yr Class 1 Infrared protostar ~10⁵yr Birthline Class 2 TTauri ~10⁶yr Class 3 **Evolved TTauri** ~10⁷yr Time

Prestellar core

Star formation

Importance of chemical composition

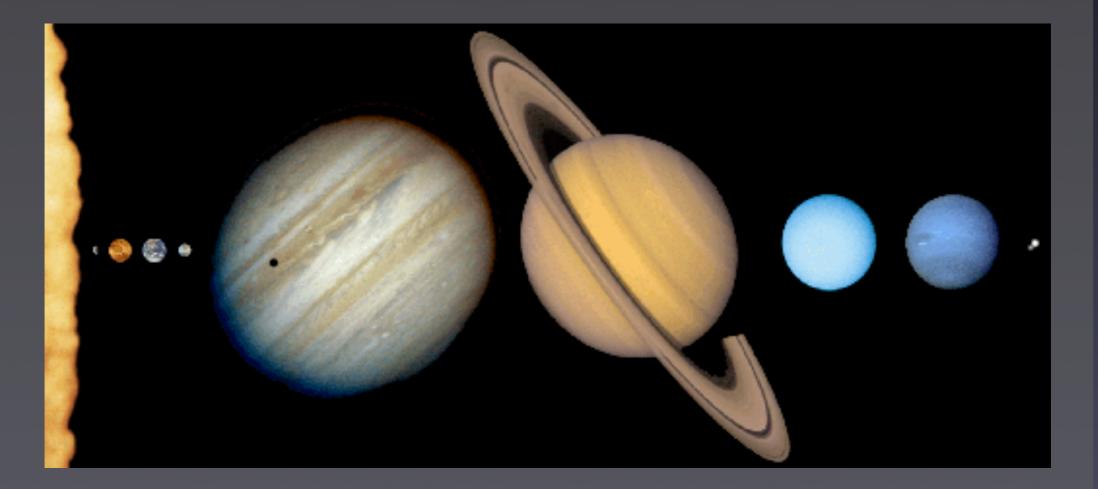
Part of the second of the seco


Star formation

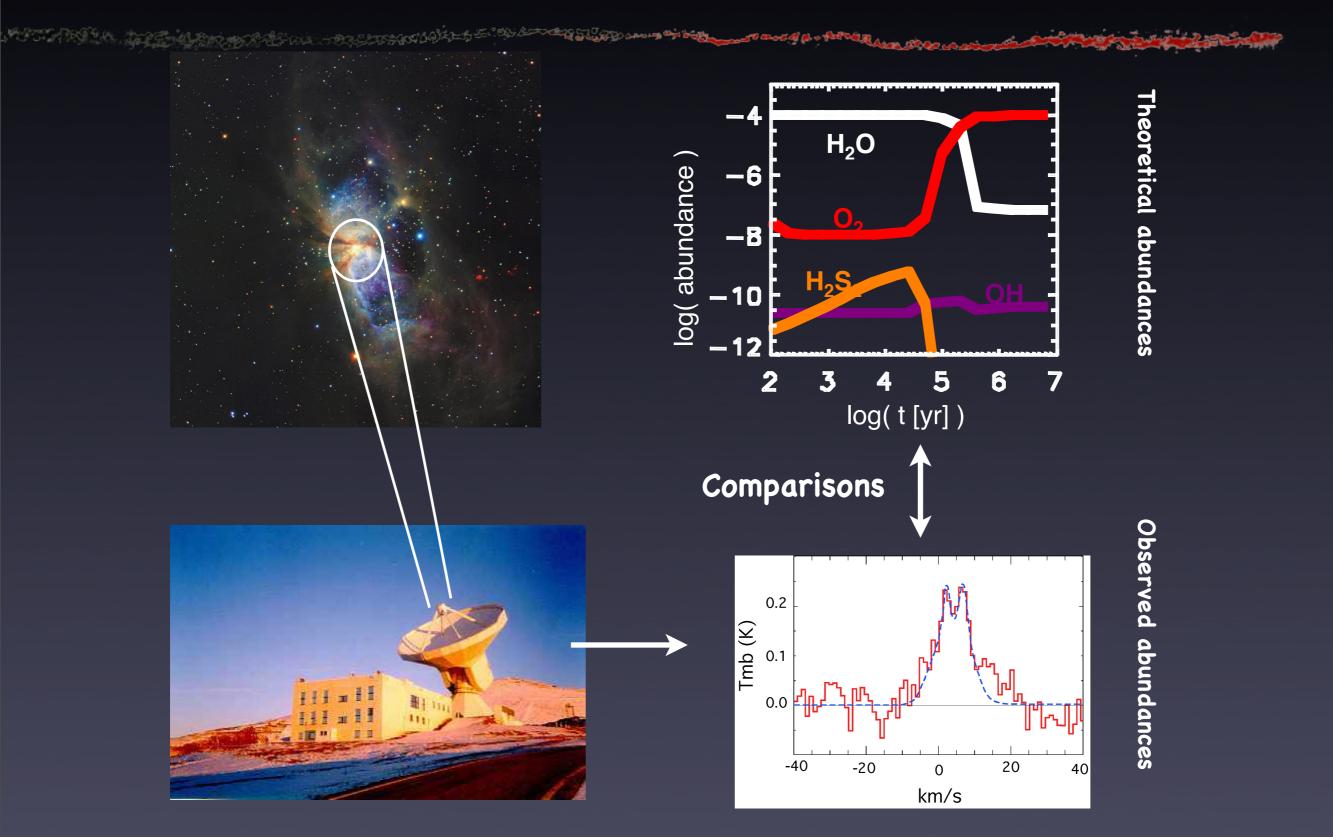
Pressure of radiation
(gas cooling)
Magnetic field coupling
(ionization fraction)

Importance of chemical composition

Chemical clocks


Importance of chemical composition

NO MOST OF A STORE STORE

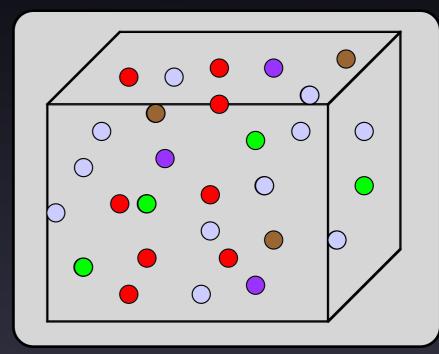

Planet formation

NOT THE PARTY OF THE PARTY OF THE STREET OF

Distribution of species in the protoplanetary disk \rightarrow Composition of system solar bodies (H₂O, N₂, CO₂, CH₄ etc) C/O elemental ratio in the disk \rightarrow presence of water in the system or not

Modeling the chemistry / testing those models

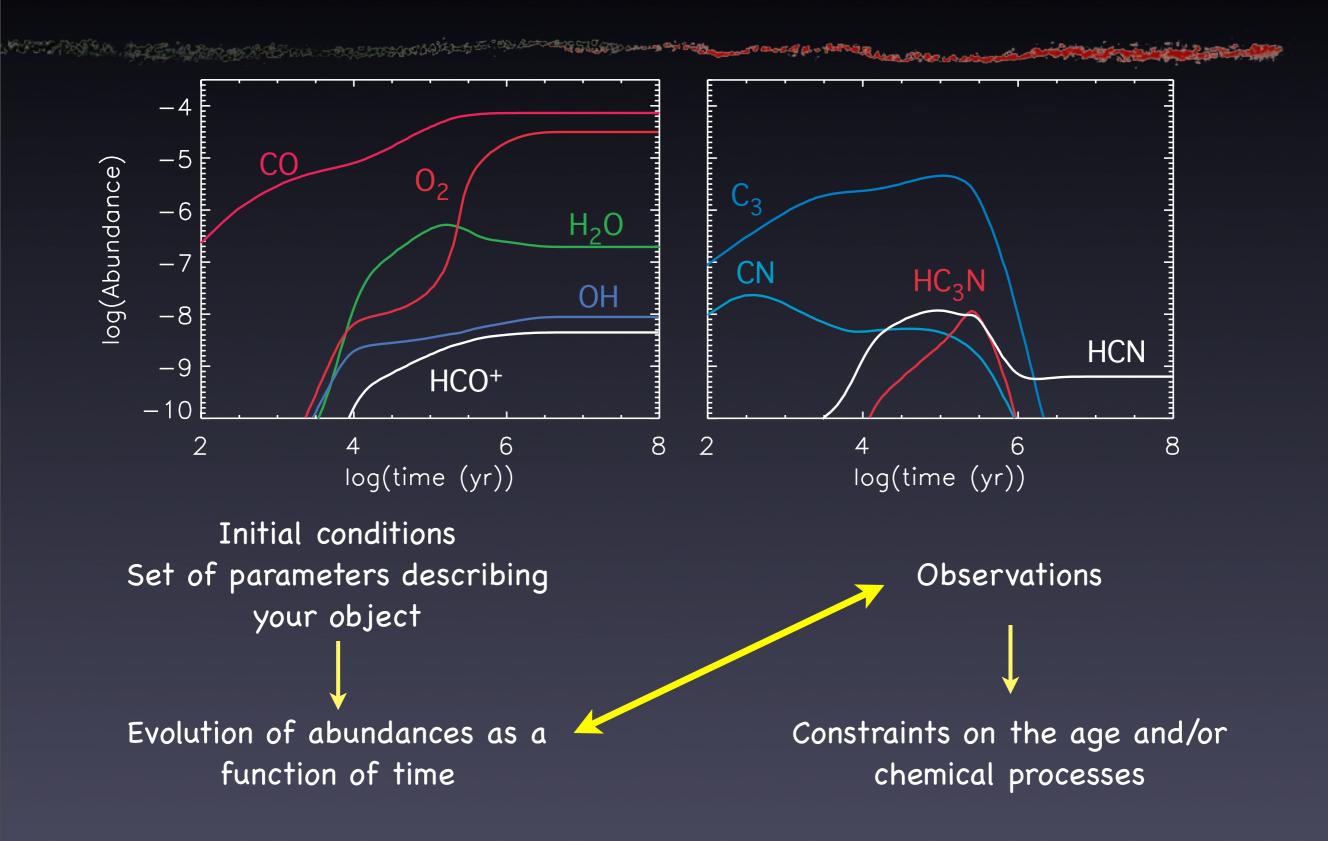
Gas-Phase chemical models Description of processes


- ✓ Mainly ion-molecule reactions with atoms (C⁺, O, N and S⁺) and radicals (OH, CH, CH₂, H₃⁺ etc)
- ✓ Ionization and dissociation by cosmic-rays, UV and X photons (source of ionization, $H_2 + \gamma \rightarrow H_2^+ + e^-$)
- ✓ Electronic recombinations ($H_3O^+ + e^- \rightarrow H_2O + H$)
- ✓ Neutral-neutral reactions mainly with atoms and radicals (Smith, Herbst & Chang 2004)
- ✓ Radiative associations (C + $H_2 \rightarrow CH_2$ + photon)
- ✓ Electron attachment ($C_4 + e^- \rightarrow C_4^- PAH + e^- \rightarrow PAH^-$)

Gas-Phase chemical models

Description of models

Compute species abundances as a function of time:

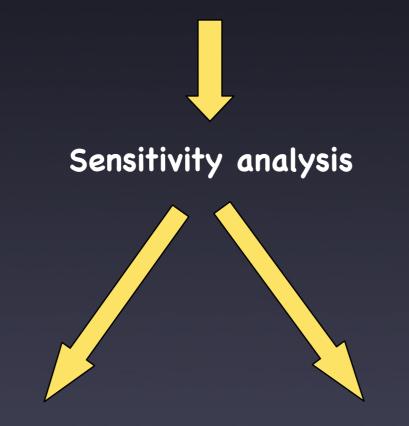


Parameters of the models:

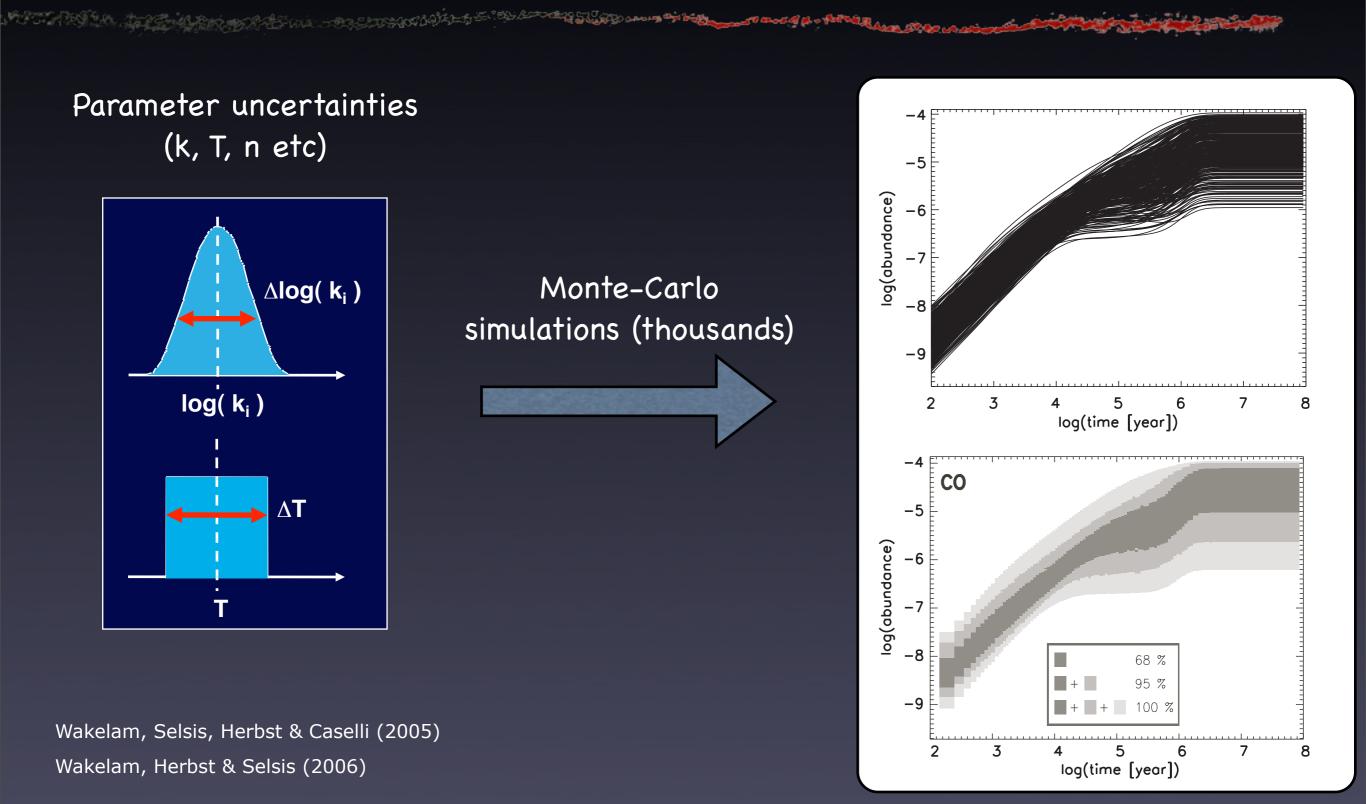
- Gas and grain temperatures (K)
- Density (cm-3)
- Elemental abundances
- UV, X-ray and Cosmic-ray fields
- Chemical networks

Current models follow around 400 gas-phase species through more than 4500 gasphase reactions

Gas-Phase chemical models

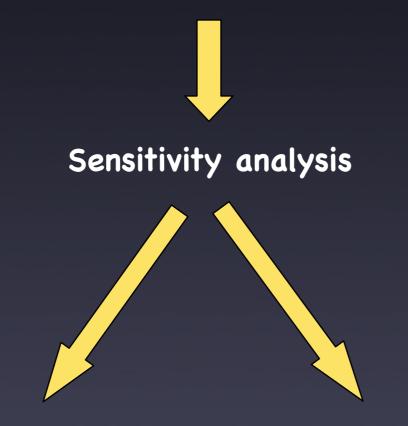

Gas-Phase chemical models

Sensitivity analysis


The state of the second st

Parameter uncertainties for a OD gas-phase model:

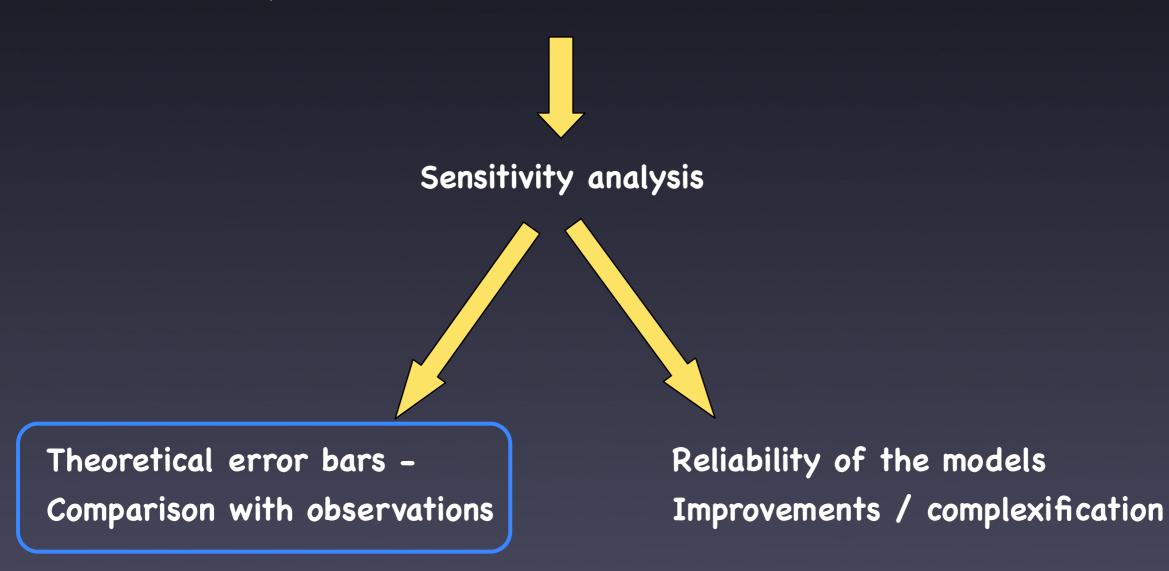
Gas temperature and density, elemental abundances, initial conditions, cosmic-ray ionization rate (ζ), reaction rate coefficients


Theoretical error bars – Comparison with observations Reliability of the models Improvements / complexification

Parameter uncertainties for a OD gas-phase model:

Children and a state of the second and the state of the second and the second and

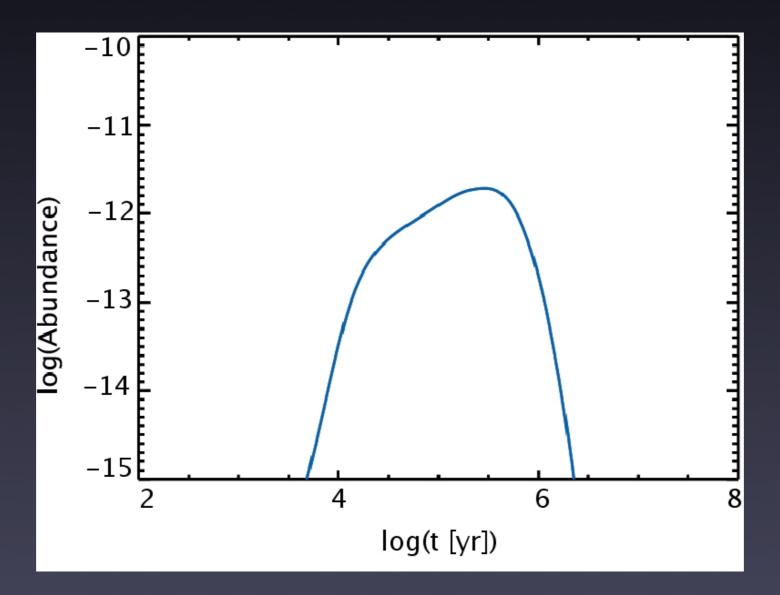
Gas temperature and density, elemental abundances, initial conditions, cosmic-ray ionization rate (ζ), reaction rate coefficients



Theoretical error bars – Comparison with observations Reliability of the models Improvements / complexification

Parameter uncertainties for a OD gas-phase model:

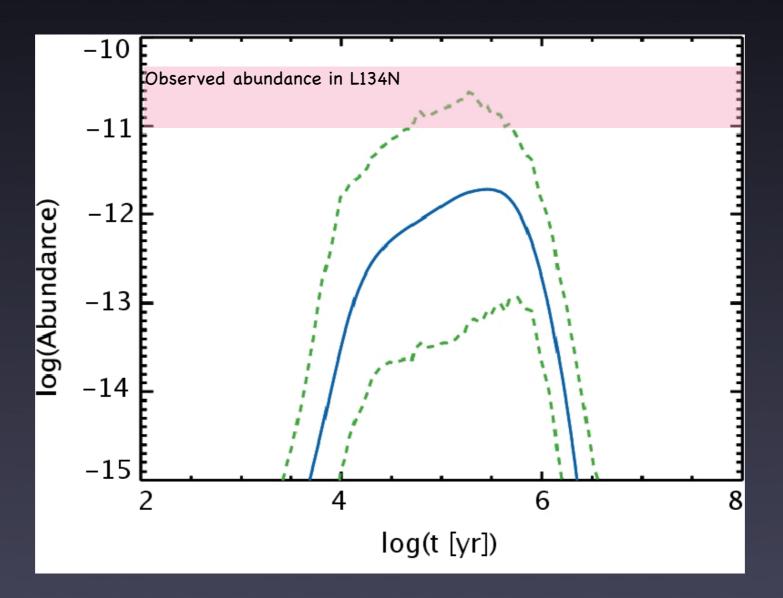
Children and a start to show and the


Gas temperature and density, elemental abundances, initial conditions, cosmic-ray ionization rate (ζ), reaction rate coefficients

Error bars on model predictions

HC7N abundance is a typical dense cloud

and the lot of the second states

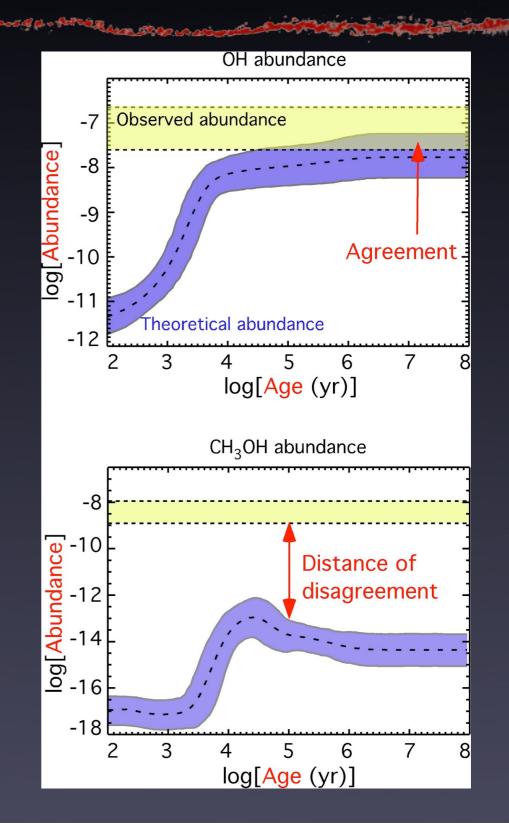


Error bars on model predictions

 HC_7N abundance is a typical dense cloud – with error bars dues to rate coefficient uncertainties

1915 - 1989 - 20

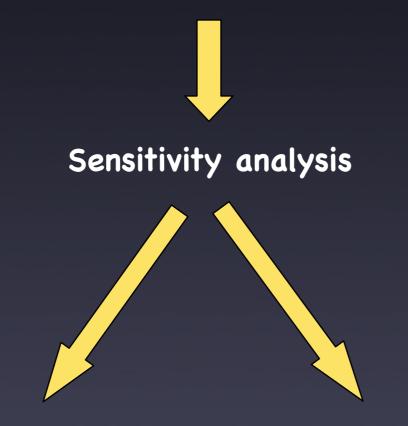
ATT AROUNT AFAIL OF


Error bars on model predictions

Objectives:

 Find which species are really not reproduced by the model to look for missing processes or wrong chemistry

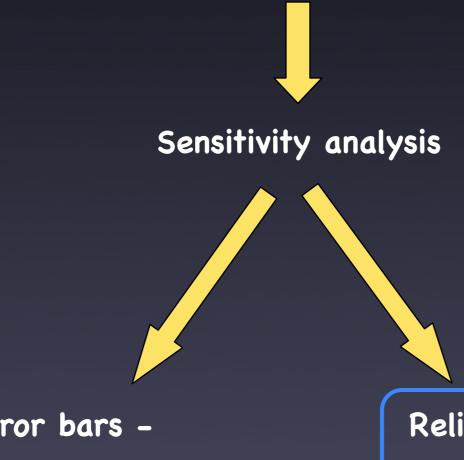
The state of the second states and the secon


Constrain "best models" (i.e. sets of parameters)

Parameter uncertainties for a OD gas-phase model:

Children and a state of the second and the state of the second and the second and

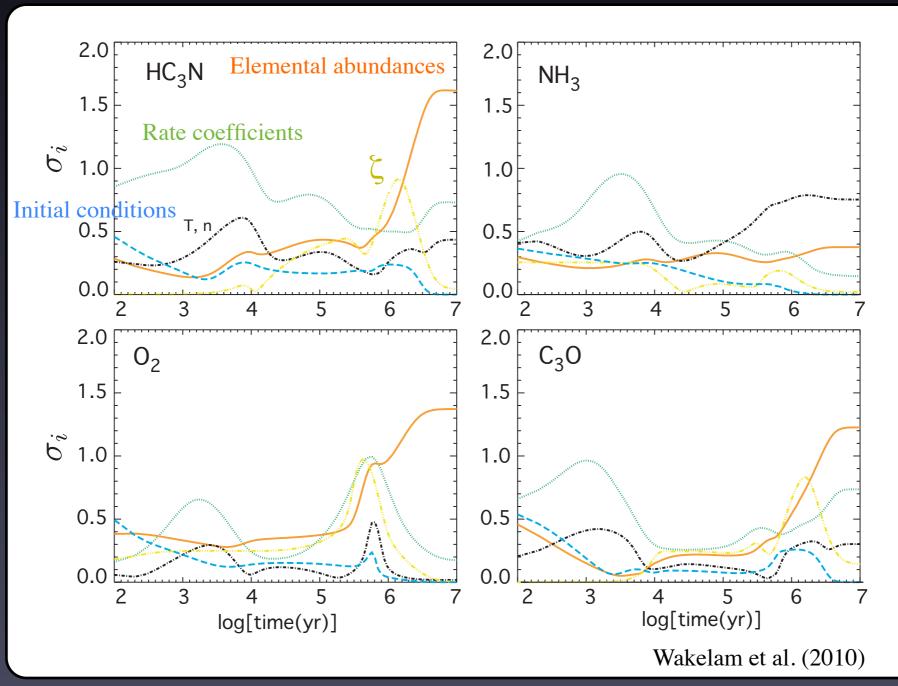
Gas temperature and density, elemental abundances, initial conditions, cosmic-ray ionization rate (ζ), reaction rate coefficients



Theoretical error bars – Comparison with observations Reliability of the models Improvements / complexification

Parameter uncertainties for a OD gas-phase model:

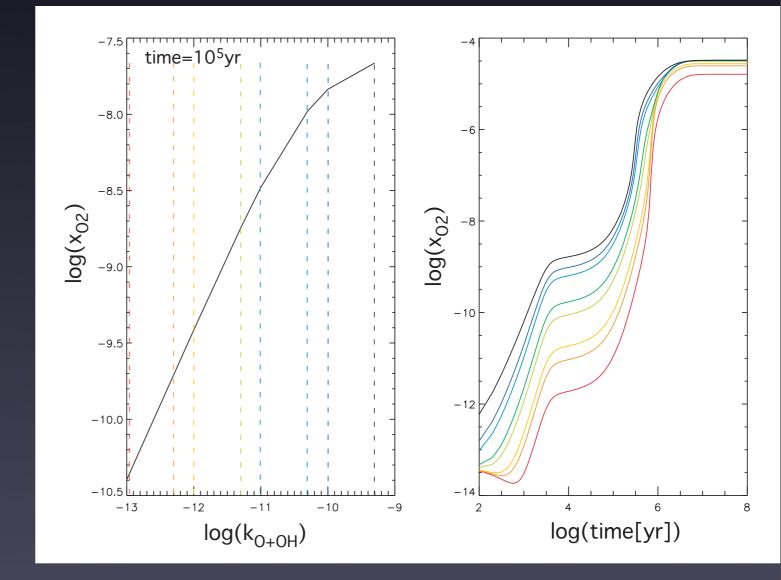
And the second of the second o


Gas temperature and density, elemental abundances, initial conditions, cosmic-ray ionization rate (ζ), reaction rate coefficients

Theoretical error bars – Comparison with observations Reliability of the models Improvements / complexification

S. SE. CONCERNENCE STUDIO

MET AND A DECEMBER AND A SERVICE Sum of the standard deviations on the abundance species obtained varying the parameters



What is a key reaction?

Answer 1 : A reaction that forms or destroys the most a species

Example of the main reaction forming O_2 : $O + OH -> O_2 + H$

O2 abundance is not much changed if the rate coefficient is changed.

Dark cloud conditions see also Quan, Herbst et al. (2008)

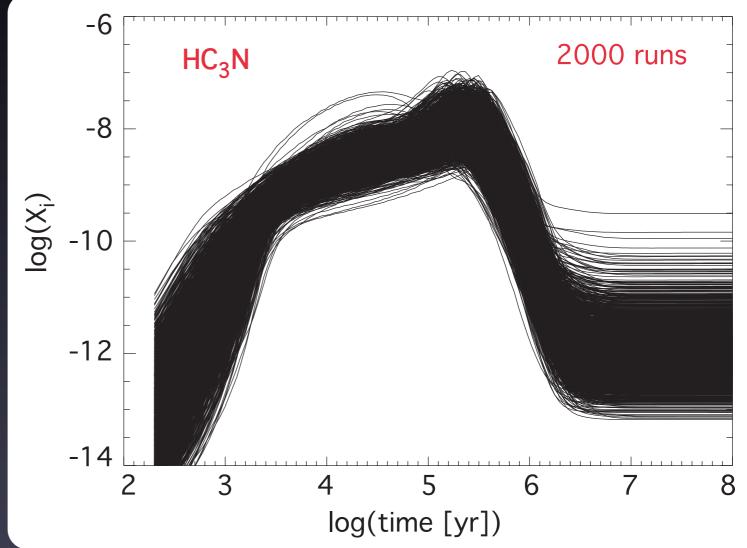
What is a key reaction?

Answer 2: A reaction which rate coefficient quantitatively changes the model predictions

Two philosophies:

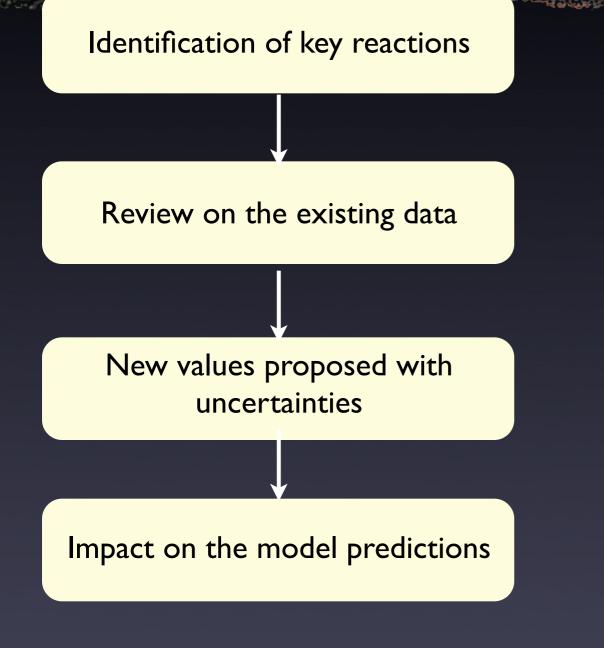
- Important for specific species

- Important for the model in general (reactions affecting many species)


Needs to define :

- the chemical network
- the astronomical object
- the time

Identification of "key" reactions

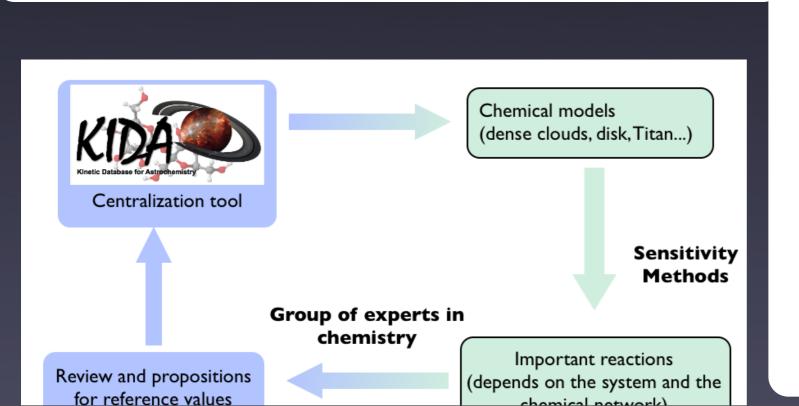

- Monte-Carlo simulations

- Variations of the rate coefficients within a certain range
- Computation of the Pearson
 correlation coefficients Pⁱ_j(t)
 (larger P -> stronger correlation)

$$P_j^i(t) = \frac{\sum^l (\log(X_j^l(t)) - \overline{\log(X_j(t))})(\log(k_i^l) - \overline{\log(k_i)})}{\sqrt{(\sum^l (\log(X_j^l(t)) - \overline{\log(X_j(t))})^2 \sum^l (\log(k_i^l) - \overline{\log(k_i)})^2}},$$

The International Space Science Institute Team

International Team of the International Space Science Institute 2008 <u>http://www.issibern.ch/teams/HSOALMA/</u>


Review paper in Space Science Reviews (2010, 156, 13): Wakelam, Smith, Herbst, Troe, Geppert, Linnartz, Öberg, Roueff, Agùndez, Pernot, Cuppen, Loison, Talbi

Key reactions for dark cloud conditions

 Table 4 List of key reactions for specific species

 Table 3 List of key reactions by number of species influenced.

Reaction	Strongly affected species ¹
$C + H_2 \rightarrow CH_2 + h\nu$	73
$\mathrm{CH}_3^+ + \mathrm{H}_2 \to \mathrm{CH}_5^+ + \mathrm{h}\nu$	18
$C_2 H_2^+ + H_2 \rightarrow C_2 H_4^+ + h\nu$	$C_2H_2O, C_2H_3, C_2H_2^+, C_2HO^+, C_2H_2N^+, C_2H_4^+$
$\mathrm{CH}_3^+ + \mathrm{CO} \to \mathrm{C}_2\mathrm{H}_3\mathrm{O}^+ + \mathrm{h}\nu$	$C_2H_2O, C_2H_3O^+$
$C_2H_4^+ + e^- \rightarrow C_2H_3 + H$	C_2H_2O, C_2H_3
$HSiO^+ + e^- \rightarrow SiO + H$	Si, SiO
$\mathrm{HSiO^{+} + e^{-} \rightarrow Si + OH}$	Si, SiO
$C_3H^+ + H_2 \rightarrow C_3H_3^+ + h\nu$	$C_{3}H_{2}, H_{2}C_{3}, C_{3}H^{+}, C_{3}H_{2}^{+}, C_{3}H_{3}^{+}, H_{3}C_{3}^{+}$
$C_3H^+ + H_2 \rightarrow H_3C_3^+ + h\nu$	$C_{3}H_{2}, H_{2}C_{3}, C_{3}H^{+}, C_{3}H_{2}^{+}, C_{3}H_{3}^{+}, H_{3}C_{3}^{+}$
$CH_3^+ + HCN \rightarrow C_2H_4N^+ + h\nu$	C_2H_2N , HC_3N , C_2H_3N , $C_2H_4N^+$
$C_4 H_2^+ + H \rightarrow C_4 H_3^+ + h\nu$	$C_4H_2, C_5H, C_6H_6, C_4H_3^+$
$\mathrm{CH}_3^+ + \mathrm{NH}_3 \to \mathrm{CH}_6\mathrm{N}^+ + \mathrm{h}\nu$	CH_3N, CH_5N
$C_4 H_2^+ + O \rightarrow HC_4 O^+ + H$	C_3O, HC_4O^+

Neutral-Neutral reactions	Affected species
$\frac{1}{C + C_3 O \rightarrow C_3 + CO}$	C_3O
$C + OCN \rightarrow CO + CN$	OCN
$H + CH_2 \rightarrow CH + H_2$	CH
$O + CN \rightarrow CO + H$	CN
$O + ON \rightarrow OO + N_2$ $N + CN \rightarrow C + N_2$	CN
$N + CN \rightarrow C + N_2$ $O + NH \rightarrow NO + H$	NH
O + O + O + O + O + O + O + O + O + O +	C_2
$O + C_2 \rightarrow CO + C$ $O + C_2 H \rightarrow CO + CH$	C_2 C_2 H
$O + C_2 \Pi \rightarrow CO + C\Pi$ $O + C_3 \Pi \rightarrow C_2 \Pi + CO$	
$ \begin{array}{c} 0 + 0 \\ 0 + 0 \\ 1 \end{array} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 $	C_3H C_3
$N + O_3 \rightarrow ON + O_2$ $N + NO \rightarrow N_2 + O$	NO
$ \begin{array}{c} \mathbf{N} + \mathbf{NO} \rightarrow \mathbf{N}_2 + \mathbf{O} \\ \mathbf{O} + \mathbf{NH}_2 \rightarrow \mathbf{HNO} + \mathbf{H} \end{array} $	
	M_{2}
$O + HNO \rightarrow NO_2 + H$	N_2O
$O + HNO \rightarrow N_2O + H$	N_2O
$CN + NH_3 \rightarrow NH_2CN + H$	MH_2CN
$O + C_3 N \rightarrow CO + C_2 N$ $N + C_2 N \rightarrow CN + C_2 N$	C_3N
$ \begin{array}{l} \mathrm{N} + \mathrm{C}_4 \mathrm{N} \rightarrow \mathrm{CN} + \mathrm{C}_3 \mathrm{N} \\ \mathrm{N} + \mathrm{C}_4 \mathrm{H} \rightarrow \mathrm{C}_4 \mathrm{N} + \mathrm{H} \end{array} $	C_4N
	C_4N
$N + C_2 N \to CN + CN$	C_2N
$CN + HC_5N \rightarrow NC_6N + H$	NC_6N
$\frac{\text{CN} + \text{HC}_3\text{N} \rightarrow \text{NC}_4\text{N} + \text{H}}{\text{Association reactions}}$	NC ₄ N Affected species
$C_4H_2^+ + HC_3N \rightarrow C_7H_3N^+ + h\nu$ $HS^+ + H_2 \rightarrow H_3S^+ + h\nu$	HC_7N
	H_2S
$HCO^+ + H_2O \rightarrow CH_3O^+_2 + h\nu$	CH_2O_2
$C^+ + H_2 \rightarrow CH_2^+ + h\nu$ S + CO $\rightarrow OCS + h\nu$	${ m C_3} m OCS$
$CH_3^+ + HC_3N \rightarrow C_4H_4N^+ + h\nu$	CH_3C_3N
$CH_3^+ + HC_5N \rightarrow C_6H_4N^+ + h\nu$	CH_3C_5N
$\frac{\mathrm{Si}^+ + \mathrm{H}_2 \to \mathrm{Si}\mathrm{H}_2^+ + \mathrm{h}\nu}{2}$	HNSi
Ion-neutral reactions	Affected species
$\overline{C_2H_3^+ + O \rightarrow C_2H_2O^+ + H}$	$C_2H_2O^+$
$C^+ + S \rightarrow S^+ + C$	H_2CS
$C_5H^+ + N \rightarrow C_5N^+ + H$	$C_5H_2N^+, HC_5N$
$C_2H_4^+ + N \rightarrow C_2H_2N^+ + H_2$	$C_2H_2N^+$
$C_4H_2^+ + S \rightarrow HC_4S^+ + H$	C_4S
$\mathrm{H}_3^+ + \mathrm{C} \to \mathrm{CH}^+ + \mathrm{H}_2$	C_3H_3
$H_3^3 + O \rightarrow OH^+ + H_2$	H_3O^+
$C_2H_3^3 + N \rightarrow C_2NH^+ + H_2$	C_2NH^+
Dissociative recombination	Affected species
$HC_4O^+ + e^- \rightarrow C_3O + CH$	C ₃ O
$H_2NC^+ + e^- \rightarrow HNC + H$	HNC, H_2NC^+
$\rm C_5H_2N^+ + e^- \rightarrow \rm C_5N + H_2$	$C_5H_2N^+$
$\mathrm{HC}_4\mathrm{S}^+ + \mathrm{e}^- \rightarrow \mathrm{C}_4\mathrm{S} + \mathrm{H}$	C_4S
	H_2CO^+
$H_2CO^+ + e^- \rightarrow CO + H + H$	
$ H_2CO^+ + e^- \rightarrow CO + H + H CNC^+ + e^- \rightarrow CN + C $	CNC^+
	${ m CNC^+} { m C_4S}$
$CNC^+ + e^- \rightarrow CN + C$	

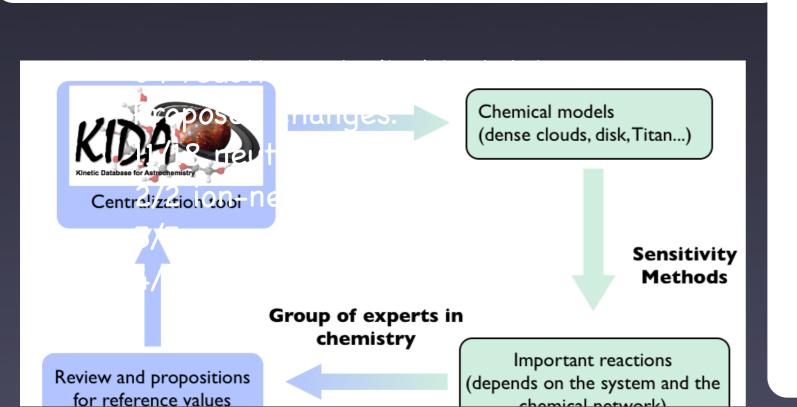
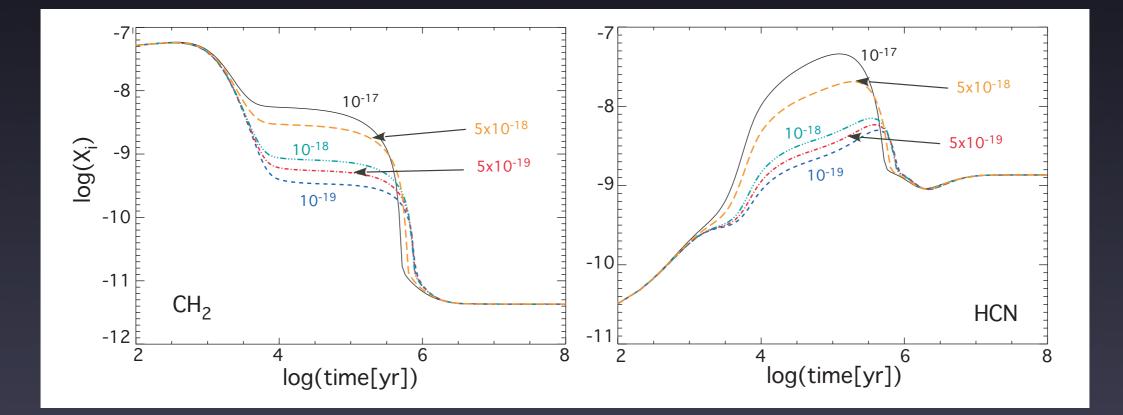

Key reactions for dark cloud conditions

 Table 4
 List of key reactions for specific species

and the second of the second with the second states and the second second second second second second second se

 Table 3 List of key reactions by number of species influenced.

Reaction	Strongly affected species ¹
$C + H_2 \rightarrow CH_2 + h\nu$	73
$\mathrm{CH}_3^+ + \mathrm{H}_2 \to \mathrm{CH}_5^+ + \mathrm{h}\nu$	18
$C_2 \ddot{H}_2^+ + H_2 \rightarrow C_2 \ddot{H}_4^+ + h\nu$	$C_2H_2O, C_2H_3, C_2H_2^+, C_2HO^+, C_2H_2N^+, C_2H_4^+$
$CH_3^+ + CO \rightarrow C_2H_3O^+ + h\nu$	$C_2H_2O, C_2H_3O^+$
$C_2H_4^+ + e^- \rightarrow C_2H_3 + H$	C_2H_2O, C_2H_3
$HSiO^+ + e^- \rightarrow SiO + H$	Si, SiO
$\mathrm{HSiO^{+} + e^{-} \rightarrow Si + OH}$	Si, SiO
$C_3H^+ + H_2 \rightarrow C_3H_3^+ + h\nu$	$C_{3}H_{2}, H_{2}C_{3}, C_{3}H^{+}, C_{3}H_{2}^{+}, C_{3}H_{3}^{+}, H_{3}C_{3}^{+}$
$C_3H^+ + H_2 \rightarrow H_3C_3^+ + h\nu$	$C_{3}H_{2}, H_{2}C_{3}, C_{3}H^{+}, C_{3}H_{2}^{+}, C_{3}H_{3}^{+}, H_{3}C_{3}^{+}$
$\mathrm{CH}_3^+ + \mathrm{HCN} \to \mathrm{C}_2 \mathrm{H}_4 \mathrm{N}^+ + \mathrm{h}\nu$	C_2H_2N , HC_3N , C_2H_3N , $C_2H_4N^+$
$C_4H_2^+ + H \rightarrow C_4H_3^+ + h\nu$	$C_4H_2, C_5H, C_6H_6, C_4H_3^+$
$\mathrm{CH}_{3}^{+} + \mathrm{NH}_{3} \rightarrow \mathrm{CH}_{6}\mathrm{N}^{+} + \mathrm{h}\nu$	CH_3N, CH_5N
$C_4 \ddot{H}_2^+ + O \rightarrow HC_4 O^+ + H$	C_3O, HC_4O^+

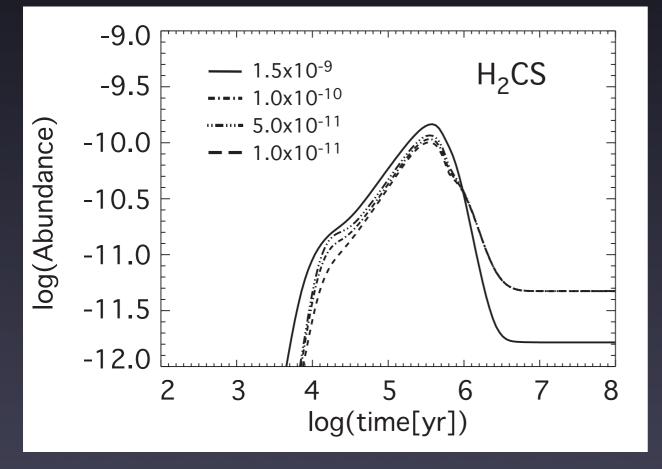


Neutral-Neutral reactions	Affected species
$C + C_3 O \rightarrow C_3 + CO$	C_3O
$C + OCN \rightarrow CO + CN$	OCN
$H + CH_2 \rightarrow CH + H_2$	CH
$O + CN \rightarrow CO + H$	CN
$N + CN \rightarrow C + N_2$	CN
$O + NH \rightarrow NO + H$	NH
$O + C_2 \rightarrow CO + C$	C_2
$O + C_2 H \rightarrow CO + CH$	C_2H
$O + C_3 H \rightarrow C_2 H + CO$	C_3H
$N + C_3 \rightarrow CN + C_2$	C_3
$N + NO \rightarrow N_2 + O$	NO
$O + NH_2 \rightarrow HNO + H$	$\rm NH_2$
$O + HNO \rightarrow NO_2 + H$	N_2O
$O + HNO \rightarrow N_2O + H$	N_2O
$CN + NH_3 \rightarrow NH_2CN + H$	MH_2CN
$O + C_3 N \rightarrow CO + C_2 N$ $N + C_2 N \rightarrow CN + C_2 N$	C_3N
$ \begin{array}{l} \mathrm{N} + \mathrm{C}_4 \mathrm{N} \rightarrow \mathrm{CN} + \mathrm{C}_3 \mathrm{N} \\ \mathrm{N} + \mathrm{C}_4 \mathrm{H} \rightarrow \mathrm{C}_4 \mathrm{N} + \mathrm{H} \end{array} $	C_4N
	C_4N
$N + C_2 N \rightarrow CN + CN$	C_2N
$CN + HC_5N \rightarrow NC_6N + H$ $CN + HC_5N \rightarrow NC_5N + H$	$\frac{NC_6N}{NC_4N}$
$\frac{\text{CN} + \text{HC}_3\text{N} \rightarrow \text{NC}_4\text{N} + \text{H}}{\text{Association reactions}}$	Affected species
$C_4H_2^+ + HC_3N \rightarrow C_7H_3N^+ + h\nu$ $HS^+ + H_2 \rightarrow H_3S^+ + h\nu$	HC_7N
	H_2S
$HCO^+ + H_2O \rightarrow CH_3O_2^+ + h\nu$	CH ₂ O ₂
$C^{+} + H_{2} \rightarrow CH_{2}^{+} + h\nu$ S + CO \rightarrow OCS + h ν	${ m C_3} m _{OCS}$
$CH_3^+ + HC_3N \rightarrow C_4H_4N^+ + h\nu$	CH ₃ C ₃ N
$CH_3^+ + HC_5N \rightarrow C_6H_4N^+ + h\nu$	CH_3C_5N
$\frac{\mathrm{Si}^+ + \mathrm{H}_2 \to \mathrm{SiH}_2^+ + \mathrm{h}\nu}{\mathrm{I}_2}$	HNSi
Ion-neutral reactions	Affected species
$C_2H_3^+ + O \rightarrow C_2H_2O^+ + H$	$C_2H_2O^+$
$C^+ + S \rightarrow S^+ + C$	H_2CS
$C_5H^+ + N \rightarrow C_5N^+ + H$	$C_5H_2N^+, HC_5N$
$C_2H_4^+ + N \rightarrow C_2H_2N^+ + H_2$	$C_2H_2N^+$
$C_4H_2^+ + S \to HC_4S^+ + H$	C_4S
$H_3^+ + C \rightarrow CH^+ + H_2$	C_3H_3
$\mathrm{H}_3^+ + \mathrm{O} \to \mathrm{OH}^+ + \mathrm{H}_2$	H_3O^+
$C_2H_3^+ + N \rightarrow C_2NH^+ + H_2$	C_2NH^+
Dissociative recombination	Affected species
$HC_4O^+ + e^- \rightarrow C_3O + CH$	C_3O
$H_2NC^+ + e^- \rightarrow HNC + H$	HNC, H_2NC^+
$C_5H_2N^+ + e^- \rightarrow C_5N + H_2$	$C_5H_2N^+$
$\begin{array}{c} C_5H_2N^+ + e^- \rightarrow C_5N + H_2 \\ HC_4S^+ + e^- \rightarrow C_4S + H \\ H_2CO^+ + e^- \rightarrow CO + H + H \end{array}$	C_4S
$H_2CO^+ + e^- \rightarrow CO + H + H$	H_2CO^+
$CNC^+ + e^- \rightarrow CN + C$	$\overline{\mathrm{CNC}^+}$
$\begin{array}{c} \mathrm{CNC^{+}} + \mathrm{e^{-}} \rightarrow \mathrm{CN} + \mathrm{C} \\ \mathrm{HC_{4}S^{+}} + \mathrm{e^{-}} \rightarrow \mathrm{C_{4}S} + \mathrm{H} \end{array}$	C_4S
$HC_3S^+ + e^- \rightarrow C_3S + H$	C_3S
$\mathrm{HC}_3\mathrm{S}^+ + \mathrm{e}^- \to \mathrm{C}_2\mathrm{S} + \mathrm{CH}$	C_3S

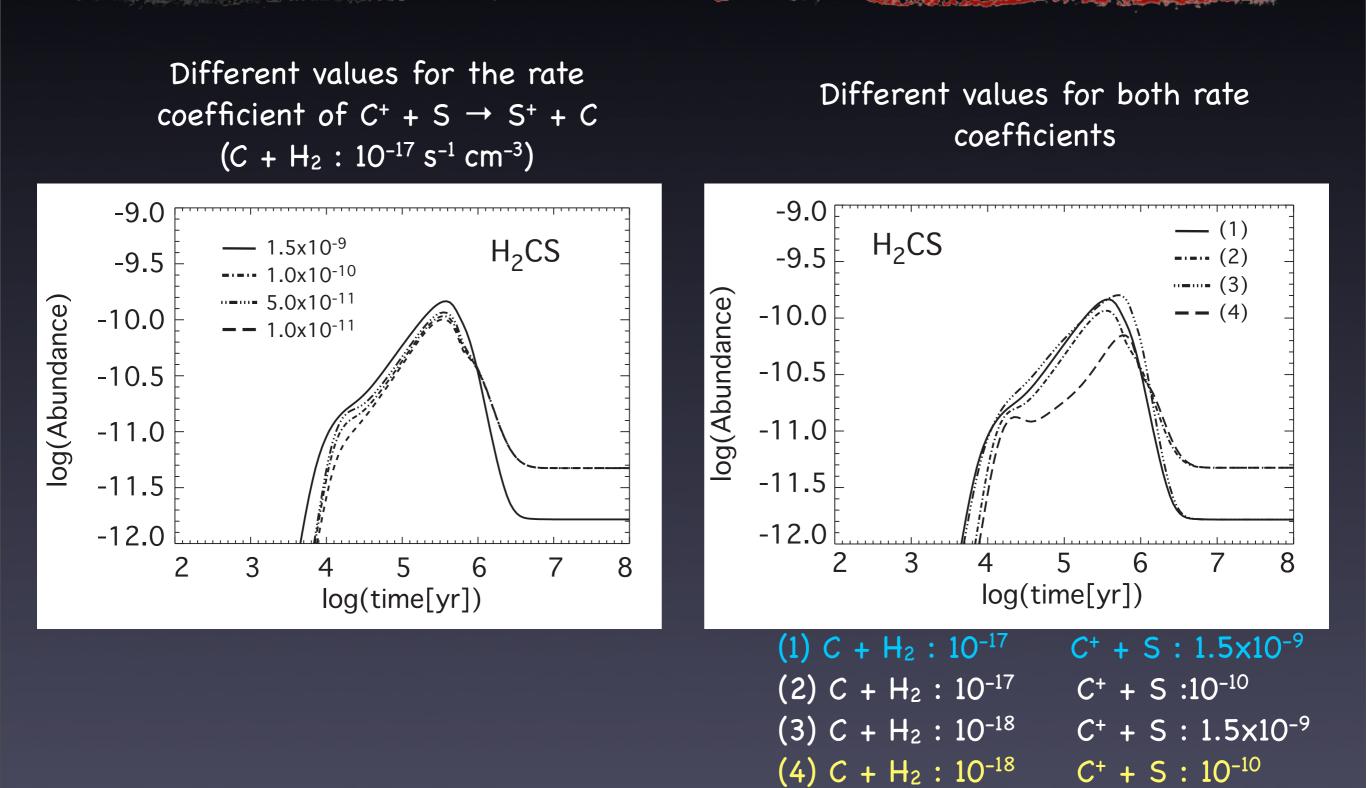
Identification of important reactions

at word to a felling

For dark cloud chemistry: C + H_2 -> CH_2 + hv identified by Wakelam et al. (2010)



 \rightarrow Detailed calculations are needed for this system (ongoing work)


Combined effects: $C + H_2 \rightarrow CH_2 + hv and C^+ + S \rightarrow S^+ + C$

Different values for the rate coefficient of C⁺ + S \rightarrow S⁺ + C (C + H₂ : 10⁻¹⁷ s⁻¹ cm⁻³)

The second states and the se

Combined effects: $C + H_2 \rightarrow CH_2 + hv and C^+ + S \rightarrow S^+ + C$

Key reactions in different types of sources

Diffuse clouds :

ALARY HAR STATE TO A CONTRACT ON A STATE OF A STATE OF

Vasyunin et al., 2004 Astronomy Letters, 30, 566-576

<u>Dense clouds</u>: Vasyunin et al., 2004 Astronomy Letters, 30, 566–576 Wakelam et al., 2009 A&A, 495, 513–521 Wakelam et al., accepted to Space Science Reviews

<u>Hot cores</u>: Wakelam et al., 2005 A&A, 444, 883-891

<u>Protoplanetary disks</u>: Vasyunin et al., 200<u>8 ApJ, 672, 629-641</u>

<u>Titan atmopshere</u>: Dobrijévic et al., 2010 Advances and Space Research, 45, 77–91

<u>Neptune atmosphere</u>: Dobrijévic et al., 2010 Planetary and Space Science, 58, 1555–1566

KInetic Database for Astrochemistry: KIDA Existing databases

Interstellar medium : UMIST/UDFA (<u>http://www.udfa.net</u>/), OSU (<u>http://www.physics.ohio-state.edu/~eric/research.html</u>) Meudon databases (PdR, Shock ...)

The second states and the second second states and the second states and the second seco

Planetary atmospheres :

NASA-JPL Chemical Kinetics and Photochemical Data for Use in Atmospheric Studies <u>http://jpldataeval.jpl.nasa.gov/</u> Critical reviews from Journal of Physical and Chemical Reference Data (Atkinson et al., Baulch et al., Herron et al., Tsang et al.,...) <u>http://www.nist.gov/srd/reprints.htm</u>

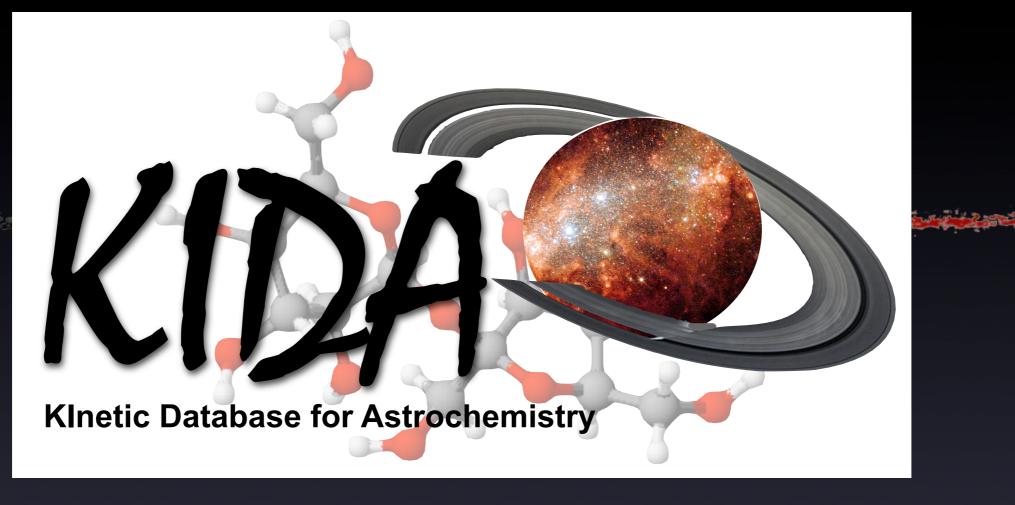
General databases :

NIST http://kinetics.nist.gov/kinetics/index.jsp, Anicich (ion-neutral) - word or pdf documents

Photo-dissociations :

- * Database from LISA <u>http://w3.lisa.univ-paris12.fr/GPCOS/SCOOPweb/SCOOP.html</u>
- * Harvard-Smithsonian Center for Astrophysics Molecular Data <u>http://www.cfa.harvard.edu/amp/tools.html</u>
- * MPI-Mainz-UV-VIS Spectral Atlas of Gaseous Molecules <u>http://www.atmosphere.mpg.de/enid/2295</u>
- * science-softCon UV/Vis+ Spectra Data Base (UV/Vis+Photochemistry Database) http://www.uv-spectra.de/
- * SWRI Photo cross sections and rate coefficients <u>http://amop.space.swri.edu/</u>

KInetic Database for Astrochemistry: KIDA Motivations for a new database

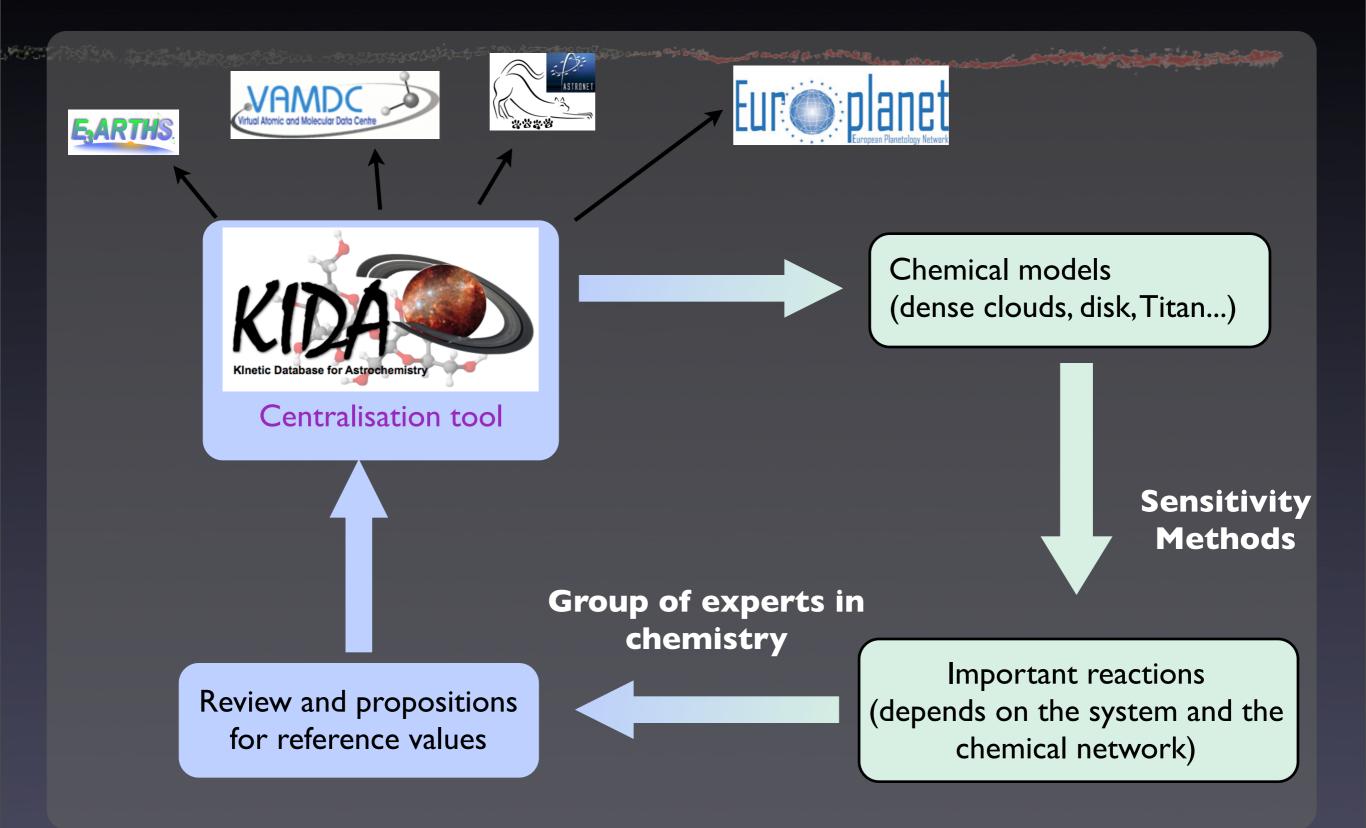

© Updates of existing databases : nonexistant, partial or delayed

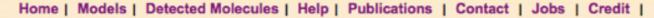
⊗ Comprehensivity : Databases dedicated to a type of reactions, temperature domains or even astrophysical objects

© Format : online consultation only, word/pdf document

And the state of the second of

© Quality aspects : compilation of all existing data without quality information or unique data chosen by the administrator (not necessary an expert in the field)




http://kida.obs.u-bordeaux1.fr/

A kinetic database of gas-phase reactions for the chemistry in the interstellar medium and planetary atmospheres.

> Online since May 2010 – about 130 unique visitor per month Rate coefficients included little by little

KInetic Database for Astrochemistry: KIDA

Europlanet **EgARTH**

Sign In

KIDA is a database of kinetic data of interest for astrochemical (interstellar medium and planetary atmospheres) studies. In addition to the available referenced data, KIDA provides recommendations over a number of important reactions.

Chemists and physicists can add their data to the database through several paths listed <u>here</u>.

Astrophysicists can download the database through the <u>download form</u>. You need to <u>log in</u> to add or download data. Forms below allows to consult and download the data.

The website will be improved little by little so the database may not be accessible time to time. Data will also be implemented later in the database especially data for planetary atmospheres.

Search for species data

pecies name *		
🖲 Formula 🔘 Inch	i code 🔘 Exact	
Search		
x : H2O, NaOH, C+ , In(hl=1S/OS/c1-2	
	of 2-letters elements have to be lowercase, eg Na	
earch by element—		
earch by element—		
	lement *	
pecies contains the e		
becies contains the e	lement * egative ion 🗹 neutral	
pecies contains the e		
becies contains the e		
pecies contains the e ✓ positive ion ✓ n Search x : C will search for all	species with C atoms	
Search x : C will search for all x : O H will search for a	egative ion 🗹 neutral	

Search for reactions

Species name*		
Search in		
○ Reactant ○ Product ③ Both		
⊙ Ion + neutral ○ Neutral		
Compute rate coefficient at 10	κ	
Type of reaction		
All	\$	
	search	
Download list of reactions		

	Minetic Database for Astrochen	nistry	VAMDC	Eur o planet	E3ARTHS
	Home Models Detected Molecules Help Public	ations Contact Jobs Credit	Sig	n In	
	Your search may con	tain lot of results. Try some of these tips to filter results	:		
Species name		Specify reactant or product	Specify ion or ne	utral	
02	 Isomers Exact formula 	Reactant Product Both	 Ion + neutral Neutral 		
	Isomers found :		Specify a type of reaction		
	• 02 : <u>02</u> <u>2</u>	All		\$	
-		search			

Search for reactions > Results of the search "O2"

If available, only recommended reaction rate coefficients are listed below. Click on details to see other values

Click on the blue icon 10 to get details on the type of reaction and on the formula.

Help

Results for the search of reactions containing "O2"

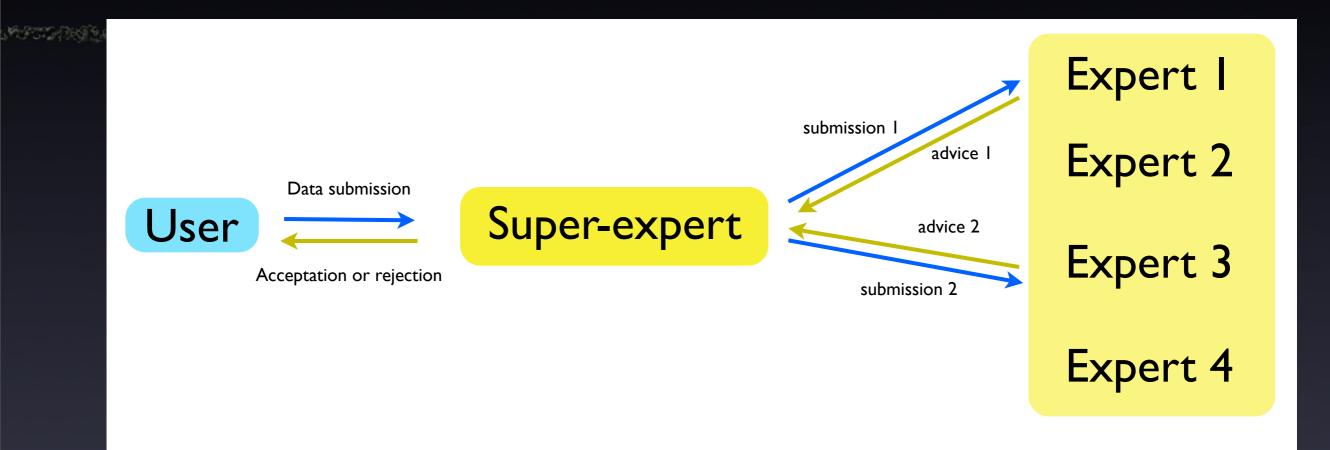
52 result(s)	52 result(s). (1 to 15).											
Туре	Details	Reactants	Products	α	β	Y	F ₀	g	Formula	k(<mark>10)</mark>) * cm ³ s ⁻¹	T (K) / UV Field *	Evaluation
AD 🛈	i	0 ₂ + S ⁻	SO ₂ + e ⁻	3e-11	0e0	0e0	2	0	Kooij 🕕	3.00e-11	10 - 280	0
AD 🕕	i	0 ₂ + C ⁻	CO ₂ + e [*]	5e-11	0e0	0e0	2	0	Kooij 🕕	5.00e-11	10 - 280	3
CE 🕕	i	$O_2 + NH^+$	NH + 02+	4.5e-10	0e0	0e0	1.25	0	Kooij 🛈	4.50e-10	10 - 280	8
CE 🕕	i	0 ₂ + N ⁺	N + 02+	4e-10	0e0	0e0	1.25	0	Kooij 🛈	4.00e-10	10 - 280	8
CE 🛈	i	0 ₂ + He ⁺	He + 02+	3.3e-11	0e0	0e0	1.25	0	Kooij 🛈	3.30e-11	10 - 280	8
CE 🕕	i	0 ₂ + H ₂ +	H ₂ + O ₂ *	8e-10	0e0	0e0	1.25	0	Kooij 🕕	8.00e-10	10 - 280	8
CE 🛈	i	$O_2 + CN^+$	CN + 02+	7.8e-10	0e0	0e0	1.25	0	Kooij 🛈	7.80e-10	10 - 280	0
CE 🕕	i	0 ₂ + SO ₂ *	SO2 + O2*	2.5e-10	0e0	0e0	1.25	0	Kooij 🛈	2.50e-10	10 - 280	8

	$O + OH \rightarrow H + O_2$										
Type of reaction: Enthalpy of the channel Status: Number of values:						f the channel atus:					
Value's number	α	β	Y	Fo	g	Type of uncertainty	T Range (K)	Evaluation	Comments	Added By	Added On
1	4e-11	0e0	0e0	3	0	logn	10 - 50		0	J. LOISON	2010-12-09 23:33:44
2	3.5e-11	0e0	0e0	1.29	0	logn	39 - 142	O	0	V. WAKELAM	2009-03-27 09:19:20
<u>3</u>	2.4e-11	0e0	-110e0	1.2	50	logn	150 - 500	1	0	J. LOISON	2010-11-30 14:33:50
All									0		

See Waiting for approval values

Rate Coe	fficient	Recommendation Ref	eferences Comments				
All values	Not recom	mended values Not rat	ated values Recommended Values				
Value's number	Formula	a k(<mark>10</mark>) cm ³ s ⁻¹	Method	Description	Origin	Evaluation	Authors
1	Kooij 🛈	4.00e-11	Reviews and Evaluations	KIDA experts recommendation ,see datasheet	Datasheet		
2	Kooij 🕕	3.50e-11 🛈	Measurements		Other database	0	Carty, D. et al
3	Kooij 📵	1.44e-6 🛈	Reviews and Evaluations		Bibliography	L	Atkinson, R. et al

What can you do with KIDA?


- Consult existing data
- Comment on existing data

The Part of the second of the

- Include your own data
- Propose recommendations
- Store your list of reactions as an ascii file for published models
- Download a list of reactions

Needs to be registered

KIDA Experts

KIDA experts 2010-2013:

- Nigel G. Adams Marie-Christine Bacchus Astrid Bergeat Karine Beroff Veronica Bierbaum Marin Chabot Alexander Dalgarno Ewine van Dishoeck
- Alexandre Faure Wolf Dietrich Geppert Dieter Gerlich Daniele Galli Chris H. Greene Eric Herbst Kevin Michael Hickson
- Pascal Honvault Stephen Klippenstein Sébastien Le Picard Jean-Christophe Loison Gunnar Nyman Stephan Schlemmer Ian Sims Ian Smith
- Phillip Stancil Dahbia Talbi Jonathan Tennyson Jürgen Troe Roland Wester Laurent Wiesenfeld

Datasheets

IUPAC format

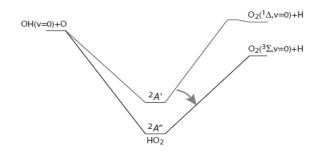
to the second states and the second states a

Currently about 50 datasheets in KIDA Jean-Christophe LOISON (Université de Bordeaux, France), Pascal HONVAULT (Université de Franche-Comté, France), Jürgen TROE (University of Göttingen, Germany), Ian Sims (Université de Rennes, France)

Authors:

$O(^{3}P) + OH(X^{2}\Pi) \rightarrow H(^{2}S) + O_{2}(X^{3}\Sigma^{-}_{g})$

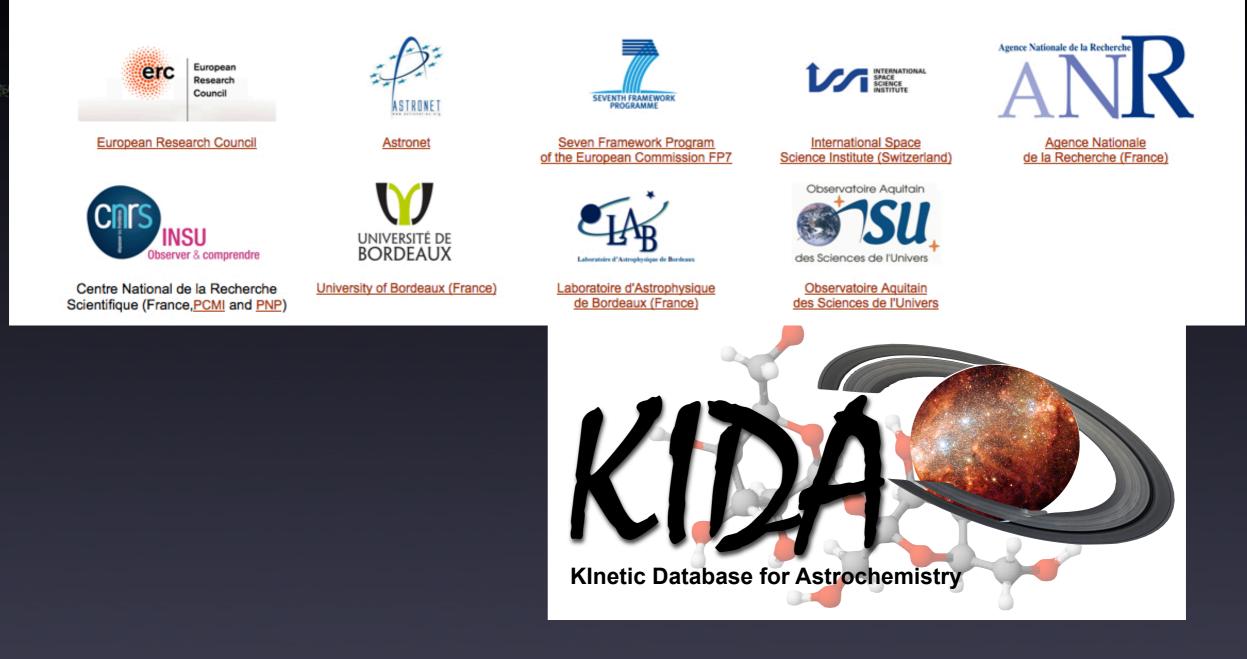
Thermodynamic Data


 $\Delta H^{\rm o}_{298} = -68.4 \text{ kJ mol}^{-1} (1)$

Rate Coefficient Data k

k/cm^3 molecule ⁻¹ s ⁻¹	<i>T /</i> K	Reference	Ref
Rate Coefficient Measurements			
$k = (3.85 \pm 0.13) \times 10^{-11} \times (T/298)^{-(0.50 \pm 0.12)}$	250-515K	Howard and Smith, 1980-81	(2,3)
$k = (3.0 \pm 1.15) \times 10^{-11} \times (T/298)^{-(0.36 \pm 0.07)}$	221-499	Lewis and Watson, 1980	(4)
$(3.1\pm0.5) \times 10^{-11}$		Brune et al, 1983	(5)
$k = f_{el} \times 3.7 \times 10^{-11} \times (T/298)^{-0.24}$	158-294K	Smith and Stewart, 1994	(6)
$f_{el} = 2/[\{5 + 3 \exp(-228/T) + \exp(-326/T)\}]$	$\{2 + 2 \exp(-205/T)\}$		(7)
$(3.17\pm0.51) \times 10^{-11}$	295	Robertson and Smith, 2002	(8)
$k = 1.8 \times 10^{-11} \times (T/298)^{-0.32} \exp(177/T)$	136-377	Robertson and Smith, 2006	(9)
$(3.5\pm1.0) \times 10^{-11}$	39-142K	Carty et al, 2006	(10)
Review			
$k = 2.4 \times 10^{-11} \times exp((110\pm50)/T)$	150-500K	Atkinson et al, 2004	(11)
Theory			
No expressions are given for theoretical 5000K).	calculations. The rang	ge of the calculations was in general	quite wide (10-
7×10 ⁻¹¹	10K	Harding et al, 2000	(12)
$0.026 \times (T/1000)^{1.47} + 1.92 \times (1000/T)^{0.46}$	300-5000K	Troe and Ushakov, 2001	(13)
5.4×10 ⁻¹³	10K	Xu et al, 2007	(14)
7.8×10 ⁻¹²	10K	Lin et al, 2008	(15)
4×10 ⁻¹¹	10K	Lique et al, 2009	(16)
4×10 ⁻¹¹	10K	Quéméner et al, 2009	(17)

Comments


The reaction $O + OH \rightarrow H + O_2$ is slightly exothermic (-68.4 kJ mol⁻¹). $O({}^{3}P) + OH(X^{2}\Pi)$ correlates with $3^{2}A' + 3^{2}A'' + 3^{4}A'$ + $3^{4}A''$ surfaces. Only two surfaces (${}^{2}A'' + {}^{4}A''$) correlate with the reaction products $H({}^{2}S) + O_2(X^{3}\Sigma_{g})$ but the ${}^{4}A''$ surface is purely repulsive. The ${}^{2}A'$ surface, populated without barrier from O + OH, correlates only with the excited $H + O_2$ ($a^{1}\Delta_g$) product channel. So it is generally assumed that reaction only occurs over the lowest ${}^{2}A''$ surface which corresponds to the electronic ground state of the HO₂ intermediate. Nevertheless, temporary population of excited electronic states during the reaction may take place and influence the rate. (12,18,19)

The study of this reaction has attracted considerable experimental attention (2-6,8-10), and there have also been a large number

List of funding

The KIDA team acknowledges all the institues and countries participating in the development of this database. List of agencies funding this project is available below.

Receive the KIDA news → register to the mailing list <u>http://kida.obs.u-bordeaux1.fr/</u> <u>kida@obs.u-bordeaux1.fr</u>