Dynamical and Photometric modeling of Saturn's Rings:

Saturn

Heikki Salo (Dept. Physics, U. Oulu, Finland)

Kobe 4.11.2011

Why are Saturn's rings interesting?

- Cassini Orbiting Tour

Close range images during SOI (July 2004) Solar Equinox (August 2009)

– Rings = Orbital Laboratory

Coolest disk in the universe? $(v/\sigma \sim 10^6)$ Many old ideas of disc galaxy dynamics manifest best in Saturn's rings

• Specific topic of this talk: Local Ring Thickness

relates to Self-Gravity wakes, Local Stability properties, Opposition Effect ...

Collaborators:

- * Dynamics of dense rings/embedded moonlets: J.Schmidt, F. Spahn, M.Seiss (Potsdam), M.Sremcevic, M. Albers (Boulder)
- * Modeling Voyager, HST, Arecibo, Cassini data: R. French (Wellesley), P. Nicholson (Cornell), R. Morishima, (JPL) K. Ohtsuki (Kobe)

THREE 'OLD' OBSERVATIONAL PUZZLES CLOSELY RELATED TO LOCAL RING THICKNESS:

- **1. Opposition brightening**
- 2. Azimuthal Brightness asymmetry
- 3. Wealth of unexplained radial structure

1. PRE-PRE-VOYAGER: RING OPPOSITION BRIGHTENING

Saturn and the "Seeliger Opposition Effect" imaged by Geoff Chester, Alexandria, VA, USA

2006 JAN 13, 03:52 UT Phase Angle = 1.7 degrees 2006 JAN 28, 03:15 UT Phase angle = 0.1 degrees

von Seeliger 1887: due to dissappearence of mutual shadows (Maxwell's Adams Prize Essay (1856): ring must compose of discrete particles)

2. PRE-VOYAGER: AZIMUTHAL BRIGHTNESS ASYMMETRY

(CAMICHEL 1958)

3. PRE-CASSINI: RADIAL DENSITY VARIATIONS (VOYAGER FLY-BY 1981)

CASSINI: CAPABLE TO DETECT WEAK FEATURES

Satellite Pan orbiting at Encke gap:

- sinusoidal gap inner edge
- kinematic wake of satellite
- Weak density waves at resonances

CASSINI: IRREGULAR(?) FINE-TRUCTURE

-Instability/overstability?

CASSINI ISS IMAGES: (Porco 2006)

- structures in km-scales
- bimodal jumps

CASSINI RSS OCCULTATION:
 Axisymmetric structures
 ⇒ act like "diffraction grating" for radiowaves emitted through rings
 150 meter fine-structure (Thomsen 2007)

SOLAR EQUINOX IMAGES AUGUST 2009

• Low Solar illumination angle brought surprises:

Edge waves excited by Daphnis cast shadows Thickness of perturbed regions several kilometers

Unexplained thickening of the inner edge of Cassini division

OVERVIEW OF SATURN'S RINGS

• $\sim 10^{16}$ METER-SIZED ICY PARTICLES

Keplerian differential rotation $\Omega \propto a^{-1.5}$ Power-law size distribution: $dN/dr \propto r^{-3}$, 1cm < r < 10m

• FREQUENT IMPACTS > 10 /per orbit

Local vertical thickness < 100 m (Ring diameter 270 000 km)

 \Rightarrow Impact speeds $\sim 1 cm/sec~$ (orbital speed $V_{orb} \sim 20 km/s$)

DISSIPATIVE IMPACTS + CONSERVATION OF Iz

Rapid local vertical flattening: timescale a few days at most Slow radial spreading: whole ring: timescale $> 10^8$ years

VERTICAL THICKNESS *H*:

- Difficult to measure directly:
 - Ring plane crossing \Rightarrow upper global limit H < 2.4 km (Dollfus, 1966) (HOWEVER: includes inclined F-ring, vertically extended ring edges etc.)
 - Sharpness of radial edges (Voyager) \Rightarrow local thickness H < 100 m
 - UVIS occultation profiles \Rightarrow at least some edges sharper than few meters

(Albers et al. 2011 DPS)

- Photometric estimate:
 - Opposition effect \Rightarrow volume density $D\sim 0.02$ (Lumme, Irvine, Esposito 1983), corresponds to H=50 m assuming r=1m particles
- Dynamical estimates:
 - Dissipative impacts \Rightarrow flattening to 5 < H < 50 m
 - Presence of selfgravity wakes $\Rightarrow H \sim 10$ m
 - Similarly: axisymmetric oscillations suggest overstability (and thus flat ring)

DOES IT MATTER WHETHER H = 10 or 100 m? YES

- Above limits = range of uncertainty in laboratory experiments frosty ice $\Rightarrow H \sim 10$ m smooth ice $\Rightarrow H \sim 100$ m
- Drastic effect on ring stability properties
 H ~ 10 m ⇒ gravity wakes, overstable oscillations
 H ~ 100 m ⇒ viscous instability
- Related to the time scale for ring radial spreading $H \sim 10 \text{ m} \Rightarrow \text{timescale } 10^{10} \text{ yrs}$ (viscous spreading of 10000 km wie zone) $H \sim 100 \text{ m} \Rightarrow \text{timescale } 10^8 \text{ yrs}$

MODELING DENSE SELF-GRAVITATING RINGS

• INGREDIENTS

- impacts + selfgravity + differential rotation
- external satellites, embedded moonlets and "icebergs"
- METHODS
 - kinetic theory: Goldreich-Tremaine-Borderies, Araki, Stewart, Hämeen-Anttila, Latter & Ogilve
 - hydrodynamics Schmit & Tscharnuter, Schmidt & Salo & Spahn
 - N-body: Trulsen, Brahic, Lukkari, Salo, Richardson, Mosqueira, Lewis, Daisaka, Ohtsuki; Charnoz
 - ⇒ Local simulation method (Wisdom & Tremaine ; Toomre & Kalnajs)
 - ⇒ combination with photometric simulations (Salo & French ; Porco & Richardson)

LOCAL SIMULATION METHOD

 \Rightarrow modeling of gravity aggregates, adhesion

Gravity: (Note: compared to galaxy dynamics, need to be 'collisional')

- Nearby particles: PP forces ($\Delta < 0.5 \lambda_{cr}$) (Salo 1992)
- Intermed. range: 3D FFT in shearing coordinates (Salo 1995)
- Distant gravity: F_z from infinite sheet

Tabulation:

Position+velocity+spin snapshots Pressure tensor components P_{ij} Fourier components, autocorrelation etc

PHOTOMETRIC MONTE CARLO RAY-TRACE MODELING

- Scattering: choose single photon, new direction from phase function with MC sampling, search new particle along the new direction

- Add contribution of each scattering to brightness in viewing direction
- Main interest to obtain I/F as a function of $B_{obs}, \phi_{obs}, B_{sun}, \phi_{sun}$ for assumed particle phase-function, single-scattering albedo
- Can also make 'images' (next page)

Toy-model illustration of the vertical corrugation pattern found by Hedman et al. (2011)

LOCAL ENERGY BALANCE

COLLISIONAL DISSIPATION = VISCOUS GAIN $w_c(1-\epsilon^2)c^2 =
u(\partial\Omega/\partial r)^2$

VISCOSITY: (from P_{xy})

- momentum transfer via radial excursions (local viscosity; WT87 relates to $< c_x c_y >$)
- transfer at physical impacts (nonlocal viscosity; WT87 < $\Delta x c_y >_{impacts} /(N\Delta t)$
- transfer via grav. forces (gravitational viscosity; Daisaka et al. 2001 $< \int \Delta x F_y > /(N\Delta t)$)
 - ⇒ TIME-SCALE OF LOCAL BALANCE: 10-100 impacts/particle

RANDOM VELOCITY, THICKNESS, VISCOSITY depend on:

- elasticity of impacts, friction
- optical depth ($w_c \propto au_{dyn}$)
- particle size distribution
- particles' internal density (+distance via $r_h \propto
 ho^{1/3} a$)

 \Rightarrow

VISCOSITY vs DENSITY RELATION

determines linear stability properties long-timescale radial evolution

LINEAR STABILITY DEPENDS ON VISCOSITY vs. DENSITY RELATION

RADIAL MASS FLUX: $au_r \sim -\partial \eta / \partial r$

time

T= 450.

STABILITY SENSITIVE TO PARTICLE ELASTICITY

18

- SUMMARY: MICROPHYSICS \Rightarrow STABILITY PROPERTIES
 - steady-state velocity dispersion determined via energy balance
 between collisional dissipation & viscous gain from differential rotation
 - crucial role of particles' poorly known elasticity:

Frost-covered particles

(Bridges et al. 1984 laboratory measurements)

 \Rightarrow flattened ring: H \sim 10 meters, susceptible to gravitational instability (also viscous overstability)

Smooth particles (Hatzes et al. 1988 laboratory measurements)

 \Rightarrow "thick" multilayer ring H \sim 100 meter, gravitationally unresponsive (may lead to viscous instability)

SELFGRAVITY WAKES/ASYMMETRY

SELF-GRAVITY

- Gravitational collapse + dissipation + differential rotation
 - \Rightarrow Self-regulation \Rightarrow minimum $Q_{ ext{Toomre}} \sim 1-2$ (corresponds to $h \sim 10-20m$)
- Spontaneous formation of gravity wakes (Salo 1992 (Nature 359, 612));

Julian and Toomre 1966, Toomre 1981

radial scale: $\lambda_{cr} = 4\pi^2 G \Sigma/\Omega^2 \sim 10-100m$

pitch-angle: $\sim 20^{\circ}$ (in Keplerian velocity field)

140 000 km

HOW DO SG-WAKES MANIFEST IN SATURN RING OBERVATIONS: AZIMUTHAL ASYMMETRY

Wakes unresolved, but have systematic $\sim 20^{\circ}$ pitch angle \Rightarrow

(Salo et al. 2004)

Ring photometric properties should depend on ring longitude and elevation

Confirmed by HST comparisons:

INDICATIONS OF SELF-GRAVITY WAKES

- Azimuthal brightness asymmetry (Dones et al. 1993, Salo et al 2004, French et al, 2007, Porco et al. 2008)
- Ring's Arecibo radar echo: (Nicholson et al. 2005)
- Saturn microwave radiation (Dunn et al. 2004, 2007)
- Cassini occultation experiments

UVIS: ((Colwell et al. 2006, 2007)

VIMS: (Hedman et al 2007)

RSS: (Marouf et al 2006)

• Cassini CIRS: ring filling factor (Ferrari et al 2009)

Strong peaking of asymmetry in the mid A-ring is a problem

(wakes perhaps hidden by debris = free-floating regolith released in fast impacts? Salo et al. 2007 DPS)

SG-WAKES SENSITIVE TO VELOCITY DISPERSION

If impacts are able to maintain thickness which corresponds to Q>2 \Rightarrow wake structure would be absent

FROSTY ICE:

SMOOTH ICE:

BRIDGES-ELASTICITY MODEL

HATZES-ELASTICITY MODEL

SG-WAKES AND SIZE DISTRIBUTION

Size distribution \Rightarrow $H_{small} > H_{large}$

SG-wakes weaker among small particles

(Salo, French 2004)

SIMULATED SG-WAKES VS DISTANCE AND OPTICAL DEPTH

Salo et al. (2008); reproduced by Schmidt et al. 2009, Cuzzi et al. 2010

identical particles, ho=900 kg/m $^3,\epsilon=0.5$ $4\lambda_{cr} imes 4\lambda_{cr}$ $N\propto a^6 au^3$

APPROACHING ROCHE DISTANCE \Rightarrow **ACCRETION**

details depend on ϵ_n , friction size distribution

Karjalainen and Salo 2007

- Charnoz et al. 2010: viscous spreading spills rings over the Roche distance
 - \Rightarrow formation of small moons outside the main rings

VISCOUS INSTABILITY AND OVERSTABILITY

LINEAR STABILITY: DEPENDS ON $\eta(au)$

RADIAL MASS FLUX: $au u_r \sim -\partial \eta / \partial r$

VISCOUS INSTABILITY

• Particle flux directed toward density maxima

- Dense/cool ringlets
- Hot/rarefied region

```
\Rightarrow BIMODAL
```

= Original explanation for "ringlet structure" discovered by Voyager, but later discarded

Hämeen-Anttila, Lukkari, Ward, Lin & Bodenheimer

Requires smooth elastic particles, inconsistent with gravity wakes.

Size-dependent selective instability?
 works also between two dense regions!
 Salo & Schmidt (Icarus, 2010)

However, requires rather specific ϵ_n vs particle size dependence

OSCILLATORY INSTABILITY (VISCOUS OVERSTABILITY)

Upper left corner:

weak gravity, high impact frequency ⇒ axisymmetric oscillations superposed on inclined selfgravity wakes

Ring overshoots in smoothing density variations due to steep rise of viscosity with density.

Salo et al. 2001, Schmidt et al. 2001

►

OVERSTABILITY II

Oscillations with epicyclic frequency Time-evolution over 1/2 periods \Rightarrow

- Hydrodynamical stability analysis Schmit & Tscharnuter 1995, 1995
 predicted too easy onset of overstability
- Disagreement with N-body simulations (Salo et al. 2001)
 ⇒ improved hydrodynamic models Schmidt et al. 2001, Schmidt & and Salo 2003)
- proper kinetic treatment
 Latter & Ogilve 2006, 2007

OVERSTABLE OSCILLATIONS (τ =1.4, ρ =300, r=1m, ϵ -Bridges, a=100 000km)

OSCILLATORY INSTABILITY III

Cause of the 150m oscillations in RSS occultations? (Thomsen et al 2007)
 UVIS occultations: axisymmetric structures (Colwell et al. 2007)

Matches the natural scale seen in simulations

VERTICAL SPLASHING - SHADOWS

Dense rings nearly imcompressible ⇒ overstable oscillations associated with vertical 'splashing' (Borderies, Goldreich, Tremaine 1984)

Effect strong enough to cause shadows (middle frame)

OBSERVABLE EFFECTS OF NON-RESOLVED SHADOWS?

TOY-model (true shadows non-resolved!)

Mean brightess as function of azimuth: Even 10% systematic variations predicted Salo &Schmidt 2011 DPS

OPPOSITION BRIGHTENING

RING FILLING FACTOR/PHOTOMETRY

OPPOSITION BRIGHTENING

Coherent backscattering at particle surface regolith

or disappearence of mutual shadow between particles ?

(Debated for over 50 years!)

Lumme et al. 1983: due mutual shadowing

 \Rightarrow filling factor 0.02

How to reconcile with dense rings?)

MECHANISMS FOR OPPOSITION BRIGHTENING

(Hapke, Irvine, Bobrov, Lumme, Esposito, Muinonen, Mischenko, Nelson ...)

INTER-PARTICLE MUTUAL SHADOWING: Only illuminated surfaces visible $\alpha \rightarrow 0^{\circ}$ HWHM $\propto R/L \propto D$ volume filling factor

(R typical particle size, L separation)

INTRINSIC BRIGTENING OF PARTICLES

- Shadow-hiding at particles' surface regolith (SH)

Basically same mechanism as interparticle shadowing

- Coherent backscattering (CB)

Constructive inteference of incoming and outgoing photon in a medium made of wavelength sized grains

 ${
m HWHM} \propto \lambda/L_{tr}$ (L_{tr} transport mean free path, depends on wavelength and grain size)

SATURN RING'S OPPOSITION EFFECT: INTRINSIC OR INTER-PARTICLE EFFECT?

• Inter-particle shadowing mechanism favored until late 1980's

- Lumme et al. 1983: $D \approx 0.02 \Rightarrow$ observed narrow peak for identical particles this corresponds to $H/R \sim 50$
- In 1990s intrinsic effect became more popular:
 - Elasticity measurements of frost-covered ice (Bridges et al. 1984)
 - \Rightarrow Dynamical models favor flattened rings (D > 0.1)
 - Laboratory measurements of intrinsic opposition peak
- Personal view: both effects MUST be present:
 - Simulations with size distribution ⇒
 narrow inter-particle shadowing opposition peak unavoidable
 - Low optical depth C ring has strong opposition effect ⇒
 particles must have a large intrinsic component

INTRINSIC AND INTRA-PARTICLE EFFECT DIFFICULT TO SEPARATE

• Theoretical formulae of CB and SH have nearly similar forms:

Polarization measurements would be helpful

CB: peak in linear and circular polarization ratios

INTER-PARTICLE SHADOWING DEPENDS STRONGLY ON *B* width \propto effective volume density *D*

EXTENSIVE HST DATA SET

• French et al. since 1996: covers full Saturn Seasons Poulet, Cuzzi, French, Dones 2002 analysed phase curves, but only for for $B = 10^{\circ}$ Cycle 13: "Saturn's Rings at True Opposition" French et al. 2007

HST PROFILES AT TWO ELEVATIONS:

• Phase curve indeed steeper for smaller elevation! (from Salo & French, Icarus in press)

HST profiles at two elevations: normalized to $lphapprox 6^\circ$

MODELING HST OBSERVATIONS

- Grid of dynamical/photometric simulations (au, r_{max}/r_{min} , ϵ_n) (MC method of Salo & Karjalainen 2003 (Icarus 164,428))
- Comparison to extensive HST observations (α , $B_{\rm eff}$, λ)
- Match the *elevation dependence* of $OE \Rightarrow$ best size distribution model
 - \Rightarrow extract simulated inter-particle contribution from observations
 - \Rightarrow what is left is intrinsic part

single scattering enhancement due inter-particle shadowing:

optical depth au = 0.1 - 2.0elevation $B = 4^{\circ} - 26^{\circ}$ elevation $R_{
m max}/R_{
m min}$ varied

Observed HST phase curves show elevation dependence!

Dick French

 ⇒ Intrinsic and mutual shadowing can be separated! (Salo and French, Icarus 2010)
 Narrow peak consistent with flat dense ring predicted by dynamics

C-ring

SUMMARY: B-ring

SUMMARY

• SELF-GRAVITY WAKES CAN ACCOUNT FOR:

A-ring and inner B ring asymmetry in HST observations **Radar asymmetry** Longitude and elevation angle dependent optical depth

• OVERSTABILITY:

High density/weak gravity regime \Rightarrow 150 m oscillations, modulations(?)

• IMPLIED RING PARTICLE PROPERTIES: internal density $\sim 300 - 450$ kg/m³ elasticity close to Bridges et al. 1984 'frosty ice'

• STILL A PROBLEM: B-RING IRREGULAR VARIATIONS:

Role of selective intabilities?, particle adhesion?

150 meter fine-structure

- Photometric modeling of HST data:
 - Dense ring with vertical structure and size distribution can have narrow opposition peak
 - Inter-particle and intraparticle effect separated by the elevation angle dependence

Saturn's rings at 30 cm resolution ? 100 000 particles illuminated with 10⁸ photons

Final Disclaimer:

this seminar might have been unsuitable for children!

Mickey The Detective is following a thief to an observatory, and interviews the "astronomers" if anyone has seen anything unusual?

Which one is an imposter?

- "Not seen anything, have followed a supernova without a pause"
- "Too busy, estimating the thickness of Saturn's rings"
- "No idea, have been staring a new black hole for hours"
- "No sign of thief, but have seen a two-tailed comet"

Can't fool Mickey! "There is no such thing as thickness of Saturn's rings! The one who claims to measure it is not a real astronomer!"