Retention time of Crater Ray Materials on the Moon

> 本田親寿 公立大学法人会津大学 先端情報科学研究センター

Crater Ray

• Fresh materials not be affected by space weathering

→ Bright compared with the surrounding materials

 Formed by excavation and deposition of fresh materials from both the primary crater and the secondary craters (Hawke et al., 1999, 2000)

Space Weathering (1)

 Surface materials are modified by exposure to cosmic rays, solar wind, and meteorite bombardments (Sasaki et al., 2001)

Sasaki et al. (2001)

Space Weathering (2)

- Effects of space weathering
 - Darkening : Surface reflectance becomes low
 - Reddening : Visible range is darker than near infrared
 - Weakening of absorption band depths

Crater Ray

• Fresh materials not be affected by space weathering

→ Bright compared with the surrounding materials

 Formed by excavation and deposition of fresh materials from both the primary crater and the secondary craters (Hawke et al., 1999, 2000)

Crater Chronology (NPRF)

Reasons for Disappearance of Rays

- Rays disappear in 1.1 Gyr (Wilhelms, 1987) 750 Myr (0.75 Gyr) (Werner and Medvedev, 2010)
- Space weathering acts directly on surface materials
- Gardening
 - Surface materials are mixed with surrounding space weathered materials by micrometeorite bombardments

Reasons for Disappearance of Rays

- Rays disappear in 1.1 Gyr (Wilhelms, 1987) 750 Myr (0.75 Gyr) (Werner and Medvedev, 2010)
- Space weathering acts directly on surface materials
- Gardening
 - Surface materials are mixed with surrounding space weathered materials by micrometeorite bombardments

月の地質区分 Eratosthenian - Copernican

Wilhelms (1987)

光条をもつクレーター: Copernican 光条をもたないクレーター: Eratosthenian

USGS作成の詳細地質マップ

Objective

Investigate retention time of crater rays using high-resolution data from Terrain Camera and Multiband Imager onboard Kaguya

Analysis Areas

MI 750 nm image

	Longitude	Latitude	Areas [km²]
1	0°N-15°N	147.5°E- 148.1°E	8.3 × 10 ³
2	0°N-15°N	148.5°E- 149.2°E	8.3 × 10 ³
3	15° S-0° N	143.2°E- 143.5°E	8.1×10^{3}
4	15° S-0° N	144.3°E- 145.1°E	8.1 × 10 ³

Crater with Bright Ray

MI

Crater with No Ray

MI

MI-OMAT

Optical Maturity ParameTer (OMAT) (Lucey et al., 2000)

- Optical index representing the degree of space weathering (Low OMAT value means mature soil)
- Definition :

$$OMAT = \sqrt{(R_{750} - x_0)^2 + \left(\left(\frac{R_{950}}{R_{750}}\right) - y_0\right)^2}$$

 R_{750} : Reflectance at 750 nm R_{950} : Reflectance at 950 nm $x_0 = 0.08, y_0 = 1.19$

Calculate from multiband data obtained by MI

Space Weathering (2)

- Effects of space weathering
 - Darkening : Surface reflectance becomes low
 - Reddening : Visible range is darker than near infrared
 - Weakening of absorption band depths

Space Weathering (2) つづき

手順

- TCデータ(低太陽高度条件データ)を用いて、 計測領域内の直径300m以上の地形の形状 から判断して新鮮なクレーターをリストアップ
- MIデータを用いて、リストアップしたクレー
 ターのOMATプロファイルを調べ、光条の有無
 を判定する

OMAT and Crater Rays

- OMAT value of ray materials is high
- OMAT value of rayed craters
 - High at the crater rim
 - Decreases with the distance from crater rim

OMAT

OMAT Profiles

- Calculate radial average OMAT value
- Normalized distance from crater center by crater diameter

Rayed Craters Extraction

- 1. Identify craters larger than 300 m in diameter in TC image
- 2. Extract rayed craters based on the following criteria:
 - OMAT value at the crater rim is larger than 0.15
 - OMAT value decreases with the distance from crater rim

Background OMAT Value

 0.14 ± 0.01 120 100 80 Num. 60 40 20 0 0.11 0.12 0.13 0.14 0.15 0.16 0.17 0.18 0.19 0.10.2 0.21 0.22

Background OMAT Value

Rayed Craters Extraction

- 1. Identify craters larger than 300 m in diameter in TC image
- 2. Extract rayed craters based on the following criteria:
 - OMAT value at the crater rim is larger than 0.15
 - OMAT value decreases with the distance from crater rim

Number of All Craters and Rayed Craters

area	Num. of all craters		Num. of rayed craters	
	Total	D > 1 km	Total	D > 1 km
1	124	13	77	11
2	133	18	53	8
3	109	11	56	5
4	151	26	76	12
Total	517	68	264	36

Crater Size-Frequency Distribution

Werner and Medvedev (2010)

Rayed Craters Extraction

Distance from Crater Center in Diameter

Pattern of Ray Disappearance

Crater Size-Frequency Distribution

Precise Inspection of Rayed Craters

- Confirm existence of rays using image data
- Focus on craters larger than 1 km in diameter
- Investigate based on MI 750 nm image, OMAT, and OMAT profile

Precise Inspection of Rayed Craters

- OMAT values at the rim affect due to tiny fresh craters around a crater
- OMAT values also affect due to overlapped ejecta from a neighborhood rayed crater

Comparison with Werner and Medvedev (2010)

- Our result obviously shows that there are more rayed craters in these areas than Werner and Medvedev (2010)
- We also strongly suggest that retention time of rays is substantially longer than **750 Myr**

Werner and

Medvedev (2010)

Clementine: 8 bit(過去研究) Kaguya, MI: vis 10 bit, nir 12 bit

Space Weathering (1)

 Surface materials are modified by exposure to cosmic rays, solar wind, and meteorite bombardments (Sasaki et al., 2001)

Sasaki et al. (2001)

Lunar Iron Map

Lucey et al. (2000)

光学的成熟度

- OMATは反射率スペクトルの1000 nm付近の
 吸収の深さに着目したパラメータ
- そもそも月高地には、1000 nmに吸収を持つ 鉱物(olivine、pyroxene)がほとんど含まれない
 いため、OMATは不適当かもしれない
- OMAT以外に、スペクトルの傾きを利用した光
 学的成熟度を示すパラメータを作ってみると
 よいかも

Space Weathering (2)

- Effects of space weathering
 - Darkening : Surface reflectance becomes low
 - Reddening : Visible range is darker than near infrared
 - Weakening of absorption band depths

Conclusion

- OMAT is useful for ray detection
 - Need to investigate based on not only OMAT profile, but also OMAT map

- Retention time of rays
 - Longer than the previous results
 - Highly depending on crater size
 - → Valuable information to understand mechanism of rays disappearance

Thank you for your kind attention.