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Star formation occurs in Giant Molecular Clouds where cold condensed cores collapse triggered by external
mechanisms, such as shock waves or stellar winds. For initially static coresyeollapse is spherically symmetric and
solar-type stars form on timescales of tens of millions of years. Observations, however, have shown that typical
cloud'cores have large specific angular momenta ~ 102! cm?/s. The specific angular momenta of cloud cores are
too high to allow collapse directly to a star, only a few percent of the matter falls into the central object for typical
low-mass cores, the rest settles into a disk. Star formation thus hinges on the question of how the disk material
accretes onto the central object and thus requires knowledge of viscosity in the disk. Ordinary molecular viscosity
cannot supply the dissipation; nonaxisymmetric hydrodynamic and/or magnetohydrodynamic instabilities are often
invoked to supply the transport directly or to generate turbulence and so enhance the viscosity. We investigate the
hydrodynamic stability properties ‘of massive, self-gravitating disks to study this question. We model disks in the
linear, quasi-linear, and nonlinear regimes with a goal of elucidating the general nature of global, nonaxisymmetric
disk instabilities by mapping the regimes of instability in the relevant parameter space, and then developing a
quasi-linear theary to model the evolution of linearly unstable disks into'the nonlinear regime.
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|. Physical Pfoblem: Disk formation

*Clouds with high specific a | , Spin up and flatten as
they collapse I -

*Material ‘near the spin axis has little angular momentum and so falls inward,
forming a central object with a few percent of the mass of the cloud. The rest of the
cloud settles into a massive circumstellar gisk (e.g., Kratter et al. 2011) :
In our Solar System , the Sun contains over 99% of the total mass of the system
+Some mechanism must have caused the matter of the disk to flow inward

*\WWe model disks with a wide range of properties to analyze the nature of
nonaxisymmetric disk modes and define instability regimes in the relevant
parameter space. We address the question of angular momentum transport.




ll. Nonaxisvmmetric Instabilities ih Disks

Y 4

*Previous studies (plus many other unmentioned ones)
*Papaloizou & Pringle (1984, 1987)
*Slender annuli and rings
*Goldreich, Goodman & Narayan (1986)
*Slender, incompressible tori
*Thin ribbon approximation

*Non-self-gravitating disks
*Adams, Ruden & Shu (1989), Heemskerk et al.
(1992), Noh, Vishniac & Cochran (1992), Taga &
lye (1998)
*m=1 mode, central stag motion, thin disks

sHachisu & Tohline (1992), Woodward, Tohline &
Hachisu (1994)
*Nonlinear study of self-gravitating disks
*Shariff (2009)
*Review of current work, observation
*Magnetic effects, radiation transport




Nonaxisymmetric Disk Instabilitres
(cont'd)

*Our (students and Imamura) work (Hadley & Imamura
2009,2011, Hadley et al. 2011a,b)
*Build an extensive library of equilibrium disks and
map linear instability regimes .

*Find and analyze trends
*Build parameter space maps
Location of modal types

*Mass and Angular momentum transport, quasi-
linear theory and nonlinear simulations
*Comparison of quasi-linear and nonlinear works




Numerical Modeling of Disks: Hydrody‘mc
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where p 1s the mass deé ghetlow velocity, P is the pressure, @ is the gravitational potential,

¢ 18 the internal energy, 7S the adiabatic gamma, t 1s the time, F, and I, are artificial viscosity

parameters (Hawley 1984) and G i1s the gravitational constant.




Equilibrium modeling of disks

*Solve time independent hydrodynamic equations without artificial
viscosity for the equilibrium solution using the self-consistent field
approach (Hachisu 1986).

*Assumptions:
* constant entropy; polytropic relation for pressure and density
~axisymmetry and power law rotation on cylinders
*mirror symmetry across equatarial plane

*The hydrodynamic equations are normalized suchthat K=G =M = 1
(polytrope units) and we use cylindrical coordinates,

. A

b

e

@ 1s the radial coordinate, ¢ 1s the azimuthal coordinate, and z 1s

the vertical coordinate. The rotation axis is parallel to the z-axis.




Equilibrium Models
Large r/r,
*Approach circular cross-section
*Narrow disk approximation (ICT)
Small r/r,
*p, Moves inward, toward star and opposite side of the disk

*Large M./M,

Offsets p, toward the star

—q
*Power law rotation Q=0, [ﬂ]

°g = 2.0 Ro
Disks are axisymmetrically unstable when specific angular
momentum decreases outward, g = 2.0 is bounding case

*More centrifugal support
*p, hot offset, disks tend to flatten out
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Equilibrium mass density contours

M./M, = 0.0 M./M, = 1.0 M./M, = 10.0
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Linear Stability Analysis

*Solve linearized time dependent hydrodynamic equations without
artifictal viscosity using the equilibrium solution as the background flow
*Assumptions:
sconstant entropy; polytropic equation-of-state
*mirror symmetry across equatorial plane
*The linearized hydrodynamic equations are found using Eulerian
perturbations (see below and next slide).
» Perturbed variables

V. =0V (a,2,t)e™

V, =6V, (a,2,1)e™
pressure — P =P, +5P(@,z,t)e™

gravitational potential — ®_ =, + 8D (@, z,t)e"™




Linear Evolution Equations (Initial Value Problem)
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*Solve linearized hydrodynamic equations by discretizing-spatial
derivaitves, but leaving the time derivatives continuous (Mehtod of
Lines)

*The simulation is seeded with random, low-amplitude noise and the
solutions advanced in time using a fourth-order Runge-Kutta scheme.

*Parameters:

*Power law index of angular velocity distriibution, g
*Star mass / disk mass ratio
Inner disk radius / outer disk radius ratio

m=2,q=1.5,r-/r+=0.30, M/M;= 0.0 m=2,9=1.5,r/r+=0.10, M/M,= 0.1

1e-12
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Growth Rates and Oscillation Frequencies:
Self-gravitating Toroids
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Toroid eigenvalues:
O ) @

= Q ,andy, =—,
yl m m yA Q

m

where @_ . and @, are the real and imaginary

m,R m, |

parts of the eigenvalue, and Q. is the angular
frequency at the location of the maximum density
in the disk.

The g-values are the exponents of the power law Q(@).
The m =1,2,3.,4 eigenvalues are in magenta, red, green,
and blue, respectively. At low T/|W|, I modes dominate.
At high T/|W/|, J modes dominate. These general results

hold for star/disk systems as well.




Mode types

Equilibrium mass density contours
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Mode types

Eigenfunction amplitudes |op|/p,
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Mode types

Locations in parameter space







 Work integrals

» Total energy carried by the perturbation is the sum of the work done by perturbed

kinetic energy plus the work done by perturbed enthalpy
o 1 2 2 2 1 I:)0 2
(E)=—p: (V2 +0V; +6V; >+57/—2<5p )
£o

« Stresses d

« Time derivative of energy is the sum of the stresses E<E> =O0R t O +0y

* Reynolds stress measures the power arising from shear stress of the
equilibrium structure affecting the perturbed model

0Q2

ot = —pow—<5vwév¢>
Ow

* Acoustic wave flux carried by the perturbation redistributes energy

o, =-V-(5PSV)

» Perturbed gravity contains input from the self-gravity of the disk as well as motion
of the central star in the m = 1 case

Gy = =Py (0V-V(5®y +5D.))

23




Mode Energetics: Perturbed Energies
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P Edge
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Mode Energetics: Stresses

g=2.0,r/r,=0.50 M./My =100.0 g=2.0,r/r,=0.20 M./My =100.0 qg=1.75,r/r,=0.05 M/M,; =0.1




Parameter Space map




Parameter Space map
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Table 4.2.1. Approximate modal dominance regimes forg=1.5form=1,2,3,and 4.
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Instability Regimes:

For large star mass, Kepler
disks (q = 1.5) are stable
while q = 2 (constant specific
angular momentum disks
are unstable (Papaloizou &
Pringle 1984). We find that
Kepler disks are unstable for
even fairly massive stars
(Hadley & Imamura
2009,2011, Hadley et al.
2011).

Nonlinear simulations are
needed to determine the
outcome of instability.
Complicating the problem is
that multiple modes are
generally unstable for a
given disk model.




0.5 S N 412

0.5 4301 432143123421
0.50 34213412 [4123]3214]
(045[3412]3412

040 31 |

0.20 | stable |

0.15 | stable

0.10 | stable |
stab

The parameter P was introduced by Christodoulou and Narayan

(1992) as a measure of the importance of self-gravity to pressure. The
shape of the constant P-curves in the R(in)/R(out)-Stellar Mass parameter
space (right panel) roughly tracks where mode changes occur and serves
as an interesting disk stability parameter. For P > 2.97, 5.205, and 7.526, |
modes are unstable, J modes are unstable, and J modes dominate |
modes for g=2 (see Christodoulou and Narayan 1992, Christodoulou 1993,
Andalib, Tohline, and Christodoulou 1998). We find that the | mode
threshold is P ~ 3.5 and J modes dominate | modes for P > 5.7 for g=2.




Bmentum_Transport:
ory. and'Nonlinear Simulations
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Conservation 'ngular Momentum d

v =-VIB,

where f 18 the force density and S is the Stress Tensor given by,
. ——~ S
N :pVV—l—H-I’%VCDgVCDg

and TT is the pressure tensor. The torque density about the origin 1s then

where r is the radi tor. The torque density about the z-axis is then

0
OV,0V,S) - (2.0V,0V, + 0poV.ov, ) —mopdD

We drop first order terms because they integrate to zero over azimuthal angle and
a cycle. Nonlinear interaction terms survive averaging and may explain the early
nonlinear behavior found in numerical simulations (see also Woodward et al. 1994,
Laughlin et al. 1997,1998, Adams & Laughlin 2000, Imamura et al. 2000,2003).




Quasi-Linear Results:
Gravitational Self-interaction torque
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Mode Evolution:
Angular momentum evolution
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For star/disk systems,
the situation is complex
as several modes with
similar growth rates

may be unstable in
given systems. Which
mode dominates is
then left to nonlinear
simulations.




A. Nonlihear |- mode
Time history@@Rthe Faeirier Power of low m-modes

m nonlinear linear
________ 1 0.7(?) 0.55
2 0.83(?) 0.50
----- 3 1.19 1.24
4 1.48 1.55
)

1.64 1.58

- o
——————
.

System Parameters:

2 (n,9)=(1.5,1.5)
“““““ - (M,m)=(0.1,1)
R(in)/R(out)=0.1
T/|W|=0.338

MIRP=510 p.u.

co~jman




Nonlinear |- model
Equatorial Plane Density Contour plots
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Nonlinear and linear I modes:
Eigenfunction phases in Equatorial Plane
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Nonlinear and linear I modes:
Eigenfunction amplitudes in Equatorial Plane
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Con‘ison of QL and NL torql“

25

The quasi-linear gravitational self-
prque ( ) and interaction torque for the m = 5 mode.
forque ( ) for the The torque is calculated for the

gsimulation when the m =5 normalization that the density
perturbation’s amplitude ~ 0.01. perturbation integrated over the disk

volume is 1.




Evolution of the Mass and Angular

Momentum Distributions
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The mass distribution is on the left and the angular momentum distribution is
on the right. The times presented are 525 p.u. (1.03 Mirps, red), 712 p.u.
(1.49 Mirps, green), and 836 p.u. (1.64 Mirps, blue).
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(n,q)=(1.5,2)
(M,m)=(5,1)
R(in)/R(out)=0..661
T/|W|[=0.471
MIRP=140 p.u.




Nonlinear P modes:
Equatorial Plane Density Contour plots
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Nonlinear and linear P modes:
m = 3 mode Eigenfunctions in Equatorial Plane




Cowison of QL and NL P I\/Iode‘ues

" - ..a:'b-,1

The total torque (  curve) and
advective torque ( curve) for the
nonlinear simulation when the m =3

density perturbation’s amplitude ~ 0.0019.

The quasi-linear gravitational self-
interaction torque for the m = 3 and
4 modes. The torques are calculated
for the normalization in which the
density perturbation integrated over
the disk volume is 1.




Evolution of the Mass and Angular

Momentum Distributions
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V. Summary and Future Directions"

Performed linear, quasi-linear, and non-linear modeling of
massive, self-gravitating disks

‘Massive, self-gravitating disks are unstable over large
parts of parameter space

*Quasi-linear analysis yields good predictions of the early
nonlinear behavior of linearly unstable disks and Ieads.
predictions of mass and angular momentum transport
rates without resort to fully nonlinear calculations
*Saturation mechanisms and Supercritical Stability?

L oosen assumptions for future work; include radiation in
the nonlinear regime, include magnetic fields, include
realistic equation-of-state
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