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Star formation occurs in Giant Molecular Clouds where cold condensed cores collapse triggered by external 
mechanisms, such as shock waves or stellar winds. For initially static cores, collapse is spherically symmetric and 
solar-type stars form on timescales of tens of millions of years. Observations, however, have shown that typical 
clo d cores ha e large specific ang lar momenta 1021 cm2/s The specific ang lar momenta of clo d cores arecloud cores have large specific angular momenta ~ 1021 cm2/s. The specific angular momenta of cloud cores are 
too high to allow collapse directly to a star, only a few percent of the matter falls into the central object for typical 
low-mass cores, the rest settles into a disk.  Star formation thus hinges on the question of how the disk material 
accretes onto the central object and thus requires knowledge of viscosity in the disk. Ordinary molecular viscosity 
cannot supply the dissipation; nonaxisymmetric hydrodynamic and/or magnetohydrodynamic instabilities are oftencannot supply the dissipation; nonaxisymmetric hydrodynamic and/or magnetohydrodynamic instabilities are often 
invoked to supply the transport directly or to generate turbulence and so enhance the viscosity. We investigate the 
hydrodynamic stability properties of massive, self-gravitating disks to study this question. We model disks in the 
linear, quasi-linear, and nonlinear regimes with a goal of elucidating the general nature of global, nonaxisymmetric
disk instabilities by mapping the regimes of instability in the relevant parameter space and then developing adisk instabilities by mapping the regimes of instability in the relevant parameter space, and then developing a 
quasi-linear theory to model the evolution of linearly unstable disks into the nonlinear regime.
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I. Physical Problem: Disk formation

•Clouds with high specific angular momenta ~ 1021 cm2/s , spin up and flatten as 
they collapsethey collapse
•Material  near the spin axis has little angular momentum  and so falls inward, 
forming a central object with a few percent of the mass of the cloud. The rest of the 
cloud settles into a massive circumstellar disk (e.g., Kratter et al. 2011)( g )
•In our Solar System , the Sun contains over 99% of the total mass of the system
•Some mechanism must have caused the matter of the disk to flow inward
•We model  disks with a wide range of properties to analyze the nature of 
nonaxisymmetric disk modes and define instability regimes in the relevantnonaxisymmetric disk modes and define instability regimes in the relevant 
parameter space.  We address the question of angular momentum transport.
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II Nonaxisymmetric Instabilities in DisksII. Nonaxisymmetric Instabilities in Disks

P i t di ( l th ti d )•Previous studies (plus many other unmentioned ones)
•Papaloizou & Pringle (1984, 1987)

•Slender annuli and rings
•Goldreich, Goodman & Narayan (1986)Goldreich, Goodman & Narayan (1986)

•Slender, incompressible tori
•Thin ribbon approximation

•Kojima (1986, 1989)
N lf it ti di k•Non-self-gravitating disks

•Adams, Ruden & Shu (1989), Heemskerk et al. 
(1992), Noh, Vishniac & Cochran (1992), Taga & 
Iye (1998)y ( )

•m=1 mode, central star motion, thin disks
•Andalib, Tohline & Christodoulou (1998)

•Slender incompressible tori (ICTs)
H hi & T hli (1992) W d d T hli &•Hachisu & Tohline (1992), Woodward, Tohline & 
Hachisu (1994)

•Nonlinear study of self-gravitating disks
•Shariff (2009)
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( )
•Review of current work, observation
•Magnetic effects, radiation transport 



Nonaxisymmetric Disk Instabilities 
(cont’d)

O ( t d t d I ) k (H dl & I•Our  (students and Imamura) work (Hadley & Imamura 
2009,2011, Hadley et al. 2011a,b)

•Build an extensive library of equilibrium disks and 
map linear instability regimesp y g

•~7700 equilibrium disks
•~2100 time evolved models

•Find and analyze trends
Build parameter space maps•Build parameter space maps

•Location of modal types
•Instability mechanisms

•Mass and Angular momentum transport, quasi-g p , q
linear theory and nonlinear simulations

•Comparison of quasi-linear and nonlinear works
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Numerical Modeling of Disks: Hydrodynamic 
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Q is the internal energy,  is the adiabatic gamma,  is the time,  and  are artificial vQt P   iscosity 

parameters (Hawley 1984) and  is the gravitational constant.G



Equilibrium modeling of disks

•Solve time independent hydrodynamic equations without artificial 
viscosity for the equilibrium solution using  the self-consistent field 
approach (Hachisu 1986).

•Assumptions:
• constant entropy; polytropic relation for pressure and density

i t d l t ti li d•axisymmetry and power law rotation on cylinders
•mirror symmetry across equatorial plane

•The hydrodynamic equations are normalized such that K = G = M = 1 
(polytrope units) and we use cylindrical coordinates(polytrope units) and we use cylindrical coordinates,
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 is the radial coordinate,  is the azimuthal coordinate, and  is 
the vertical coordinate. The rotation axis is parallel to the -axis.
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Equilibrium ModelsEquilibrium Models
•Large r-/r+

•Approach circular cross-section pp
•Narrow disk approximation (ICT)

•Small r-/r+
•ρ0  moves inward, toward star and opposite side of the disk
•ρ0  increases, increasing pressure, disk puffs up

•Large M*/Md
•Offsets ρ0 toward the star

•Power law rotation 
2 0

0

q

R



 

    
 •q = 2.0 

•Disks are axisymmetrically unstable when specific angular 
momentum decreases outward, q = 2.0 is bounding case

•q = 1 5

0R 

•q = 1.5 
•Keplerian rotation
•Higher velocity as r increases than q = 2.0

•More centrifugal support
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•More centrifugal support
•ρ0  not offset, disks tend to flatten out



Equilibrium mass density contours
2 0q = 2.0

r-/r+ = .50

r-/r+ = .30

/r-/r+ = .10
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Equilibrium mass density contours
1 75q = 1.75

r-/r+ = .50

r-/r+ = .30

/r-/r+ = .10
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Equilibrium mass density contours
1 5q = 1.5

r-/r+ = .50

r-/r+ = .30

/r-/r+ = .10

M*/Md = 0.0 M*/Md = 1.0 M*/Md = 10.0
13



Linear Stability Analysis

•Solve linearized time dependent hydrodynamic equations without 
tifi i l i it i th ilib i l ti th b k d fl

y y

artificial viscosity using the equilibrium solution as the background flow
•Assumptions:

•constant entropy; polytropic equation-of-state
•mirror symmetry across equatorial plane•mirror symmetry across equatorial plane

•The linearized hydrodynamic equations are found using Eulerian
perturbations (see below and next slide). 

• Perturbed variables• Perturbed variables
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Time dependent linearized equationsLinear Evolution Equations (Initial Value Problem)Time dependent linearized equations
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Initial Value Solver

•Solve linearized hydrodynamic equations by discretizing spatial

Initial Value Solver

•Solve  linearized hydrodynamic equations by discretizing spatial 
derivaitves, but leaving the time derivatives continuous (Mehtod of 
Lines)

•The simulation is seeded with random low-amplitude noise and theThe simulation is seeded with random, low amplitude noise and the 
solutions advanced in time using a fourth-order Runge-Kutta scheme.

•Parameters:
•Power law index of angular velocity distriibution, qPower  law index of angular velocity distriibution, q
•Star mass / disk mass ratio
•Inner disk radius / outer disk radius ratio
•Azimuthal mode number, m,

•Analyze models for stability  
and modal characteristics

|δρ|/ρ0

m = 2, q = 1.5, r-/r+ = 0.30, M*/Md = 0.0 m = 2, q = 1.5, r-/r+ = 0.10, M*/Md = 0.1 

Time (MIRP) Time (MIRP)
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Growth Rates and Oscillation Frequencies:
S lf it ti T idSelf‐gravitating Toroids

, ,
1 2

Toroid eigenvalues:

     ,  and ,m R m I
my y

 
  



y
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, ,where  and  are the real and imaginary 
parts of the eigenvalue, and  is the angular 

m
m

m R m I

m

m
 




y
1
=

frequency at the location of the maximum density 
in the disk.

The q-values are the exponents of the power law ( ).
The m =1,2,3,4 eigenvalues are in magenta, red, green,
and blue, respectively. At low T/|W|, I modes dominate.



At high T/|W|, J modes dominate. These general results
hold for star/disk systems as well.
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Mode types
E ilib i d it tEquilibrium mass density contours

I+ I- J

P Edge A

q = 1.5, r-/r+ = 0.30 M*/Md = 0.0 q = 1.5, r-/r+ = 0.60 M*/Md = 0.1 q = 1.5, r-/r+ = 0.40 M*/Md = 0.0

q = 2.0, r-/r+ = 0.20 M*/Md = 100.0 q = 1.75, r-/r+ = 0.05 M*/Md = 0.1q = 2.0, r-/r+ = 0.50 M*/Md = 100.0
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Mode types
Ei f ti lit d |δ |/Eigenfunction amplitudes |δρ|/ρ0

I+ I- J

| . | |Rco | | Rco | Rco

P Edge A

q = 1.5, r-/r+ = 0.30 M*/Md = 0.0 q = 1.5, r-/r+ = 0.60 M*/Md = 0.1 q = 1.5, r-/r+ = 0.40 M*/Md = 0.0

| | | | RcoRco || Rco

q = 2.0, r-/r+ = 0.20 M*/Md = 100.0 q = 1.75, r-/r+ = 0.05 M*/Md = 0.1q = 2.0, r-/r+ = 0.50 M*/Md = 100.0
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Mode types
Ei f ti hEigenfunction phases

I+ I- J

P Edge A

q = 1.5, r-/r+ = 0.30 M*/Md = 0.0 q = 1.5, r-/r+ = 0.60 M*/Md = 0.1 q = 1.5, r-/r+ = 0.40 M*/Md = 0.0
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q = 2.0, r-/r+ = 0.20 M*/Md = 100.0 q = 1.75, r-/r+ = 0.05 M*/Md = 0.1q = 2.0, r-/r+ = 0.50 M*/Md = 100.0



Mode types
L ti i t
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Mode types
Ei f ti hEigenfunction phases
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Work integrals and stressesWork integrals and stresses
• Work integrals

• Total energy carried by the perturbation is the sum of the work done by perturbedTotal energy carried by the perturbation is the sum of the work done by perturbed
kinetic energy plus the work done by perturbed enthalpy

2 2 2 20
0 2

1 1
2 2z

P
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• Stresses
• Time derivative of energy is the sum of the stresses
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R
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• Reynolds stress measures the power arising from shear stress of the 
equilibrium structure affecting the perturbed model
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• Acoustic wave flux carried by the perturbation redistributes energy
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 

• Perturbed gravity contains input from the self-gravity of the disk as well as motion 
of the central star in the m = 1 case
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Mode Energetics: Perturbed Energies

I+ I- J

P Edge A

q = 1.5, r-/r+ = 0.30 M*/Md = 0.0 q = 1.5, r-/r+ = 0.60 M*/Md = 0.1 q = 1.5, r-/r+ = 0.40 M*/Md = 0.0

Ek
Eh

q = 2.0, r-/r+ = 0.20 M*/Md = 100.0 q = 1.75, r-/r+ = 0.05 M*/Md = 0.1q = 2.0, r-/r+ = 0.50 M*/Md = 100.0
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Mode Energetics: Stresses

I+ I- J

P Edge A

q = 1.5, r-/r+ = 0.30 M*/Md = 0.0 q = 1.5, r-/r+ = 0.60 M*/Md = 0.1 q = 1.5, r-/r+ = 0.40 M*/Md = 0.0

σR   +
σG   x
σh    *

q = 2.0, r-/r+ = 0.20 M*/Md = 100.0 q = 1.75, r-/r+ = 0.05 M*/Md = 0.1q = 2.0, r-/r+ = 0.50 M*/Md = 100.0
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Parameter space map
2 0 2
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Parameter space map
q = 2.0, m = 2
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q 0,
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Instability Regimes:y g

For large star mass, Kepler
disks  (q = 1.5) are stable 
while q = 2 (constant specific 
angular momentum disks 
are unstable (Papaloizou & 

) fPringle 1984). We find that 
Kepler disks are unstable for 
even fairly massive stars 
(H dl & I(Hadley & Imamura 
2009,2011, Hadley et al. 
2011).

Nonlinear simulations are 
needed to determine the 
outcome of instabilityoutcome of instability. 
Complicating the problem is 
that multiple modes are 
generally unstable for a

28

generally unstable for a 
given disk model. 



The parameter P was introduced by Christodoulou and NarayanThe parameter P was introduced by Christodoulou and Narayan
(1992) as a measure of the importance of self-gravity to pressure. The
shape of the constant P-curves in the R(in)/R(out)-Stellar Mass parameter 
space (right panel) roughly tracks where mode changes occur and serves p ( g p ) g y g
as an interesting disk stability parameter. For P > 2.97, 5.205, and 7.526, I 
modes are unstable, J modes are unstable, and J modes dominate I 
modes for q=2 (see Christodoulou  and Narayan 1992, Christodoulou 1993, 

29

( y
Andalib, Tohline, and Christodoulou 1998). We find that the I mode 
threshold  is P ~ 3.5 and J modes dominate I modes for P > 5.7 for q=2.



III. Angular Momentum Transport: 
Quasi-linearTheory and Nonlinear Simulations
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Conservation of Angular Momentum

f v
  
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We drop first order terms because they integrate to zero over azimuthal angle and 

( ) ( )z s s z z gv sv v v s v v v v m
s s z                    
 
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p y g g
a cycle. Nonlinear interaction terms survive averaging and may explain the early 
nonlinear behavior found in numerical simulations (see also Woodward et al. 1994, 
Laughlin et al. 1997,1998, Adams & Laughlin 2000, Imamura et al. 2000,2003).



Quasi‐Linear Results:
G it ti l S lf I t ti tGravitational Self-Interaction torque

I+ I- J

P Edge A

q = 1.5, r-/r+ = 0.30 M*/Md = 0.0 q = 1.5, r-/r+ = 0.60 M*/Md = 0.1 q = 1.5, r-/r+ = 0.40 M*/Md = 0.0

q = 2.0, r-/r+ = 0.20 M*/Md = 100.0 q = 1.75, r-/r+ = 0.05 M*/Md = 0.1q = 2.0, r-/r+ = 0.50 M*/Md = 100.0
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Mode Evolution:
A l t l tiAngular momentum evolution

I+ I- J

P Edge A

q = 1.5, r-/r+ = 0.30 M*/Md = 0.0 q = 1.5, r-/r+ = 0.60 M*/Md = 0.1 q = 1.5, r-/r+ = 0.40 M*/Md = 0.0

q = 2.0, r-/r+ = 0.20 M*/Md = 100.0 q = 1.75, r-/r+ = 0.05 M*/Md = 0.1q = 2.0, r-/r+ = 0.50 M*/Md = 100.0
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Nonlinear Results: Growth ratesNonlinear Results: Growth rates

m = 1
For star/disk systems

m = 2
m = 3

For star/disk systems, 
the situation is complex 
as several modes with 
similar growth rates

m = 4
similar growth rates 
may be unstable in 
given systems. Which 
mode dominates is 
then left to nonlinear 
simulations. 
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A. Nonlinear I- mode
h f h f l dTime history  of the Fourier Power of low  m‐modes

m nonlinear linear
1 0.7(?)      0.55( )
2 0.83(?)    0.50
3 1.19        1.24
4 1.48        1.55
5 1.64        1.58

System Parameters:

(n,q)=(1.5,1.5)
(M m)=(0 1 1)(M,m)=(0.1,1)
R(in)/R(out)=0.1
T/|W|=0.338
MIRP=510 p.u.
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Nonlinear I- model
l l lEquatorial Plane Density Contour  plots

timetime
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Nonlinear and linear I- modes:
Eigenfunction phases in Equatorial Plane
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Nonlinear and linear I- modes:
Eigenfunction amplitudes in Equatorial Plane
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Comparison of QL and NL torques

Th i li it ti l lfThe quasi-linear gravitational self-
interaction torque for the m = 5 mode. 
The torque is calculated for the 
normali ation that the densit

The total torque (red curve) and 
advective torque (green curve) for the 
nonlinear simulation when the m = 5

39

normalization that the density 
perturbation integrated over the disk 
volume is 1.

nonlinear simulation when the m = 5 
density perturbation’s amplitude ~ 0.01. 



Evolution of the Mass and Angular 
M t Di t ib tiMomentum Distributions

40

The mass distribution is on the left and the angular momentum distribution is 
on the right. The times presented are 525 p.u. (1.03 Mirps, red), 712 p.u. 
(1.49 Mirps, green), and 836 p.u. (1.64 Mirps, blue).



B. Nonlinear P mode:
Time history of the Fourier Power of low m modesTime history  of the Fourier Power of low  m‐modes

m nonlinear linear
1 ….            …..
2 0.39           …
3 0.47         0.431
4 0.47         0.449
5 0.39         0.362

System Parameters

(n,q)=(1.5,2)
(M,m)=(5,1)
R(in)/R(out)=0 661R(in)/R(out)=0..661
T/|W|=0.471
MIRP=140 p.u.
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Nonlinear P modes:
l l lEquatorial Plane Density Contour plots

timetime
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Nonlinear and linear P modes:
m = 3 mode Eigenfunctions in Equatorial Plane
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Comparison of QL and NL P Mode Torques

Th i li it ti l lfThe quasi-linear gravitational self-
interaction torque for the m = 3  and 
4 modes. The torques are calculated 
for the normali ation in hich the

The total torque (red curve) and 
advective torque (green curve) for the 
nonlinear simulation when the m = 3 
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for the normalization in which the 
density perturbation integrated over 
the disk volume is 1.

o ea s u a o e e 3
density perturbation’s amplitude ~ 0.0019. 



Evolution of the Mass and Angular 
M t Di t ib tiMomentum Distributions

The mass distribution is on the left and the angular momentum distribution 
is on the right The times presented are 405 p u (2 89 Mirps red) 463 p u
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is on the right. The times presented are 405 p.u. (2.89 Mirps, red), 463 p.u. 
(3.30 Mirps, green), 523 p.u. (3.73 Mirps, blue), and 574 p.u. (4.10 
Mirps,magenta)



IV. Summary and Future Directions

•Performed linear, quasi-linear, and non-linear modeling of 
massive, self-gravitating disks

•Massive, self-gravitating disks are unstable over large 
parts of parameter space 

•Quasi linear analysis yields good predictions of the early•Quasi-linear analysis yields good predictions of the early 
nonlinear behavior of linearly unstable disks and leads to 
predictions of mass and angular momentum transportpredictions of mass and angular momentum transport 
rates without resort to fully nonlinear calculations

•Ｓａｔｕｒａｔｉｏｎ mechanisms and Supercritical Stability?
•Loosen assumptions for future work; include radiation in 
the nonlinear regime, include magnetic fields, include 
realistic equation of state
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realistic equation-of-state
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