始原小天体有機物とアストロバイオロジー

薮田ひかる(大阪大学理学研究科宇宙地球科学専攻)

1. 隕石有機物研究のあゆみ

・1970~2000年初め アミノ酸を中心に、生体関連分子の探索
・2000年初め~現在 有機物の化学進化と初期太陽系の歴史

2. スターダスト計画:彗星塵の有機物分析

3. 日本の始原小天体探査と将来の宇宙有機物研究

隕石有機物研究のあゆみ: 初期(1970~2000年初め)

はじまりは、マーチソン隕石のアミノ酸

"私達の生命の素は、宇宙に存在するのだろうか"

1969年 Murchison 隕石の落下
(炭素質コンドライト)
1970年 隕石に<u>固有のアミノ酸を発見</u>

(Kvenvolden et al., 1970, Nature)

生命の前駆物質が宇宙で、"生物を介さずに"作られる

以降、生体関連分子を含む、<u>400種類を超える</u>有機分子が、 有機炭素の豊富な(~2%)炭素質コンドライト(CM,CIグループ)から 主に検出され、それらの起源と生成機構が研究された

炭素質コンドライト中の可溶性有機分子一覧

<u>機能性</u>を持つ有機分子は含まれていない

<u>隕石に固有なアミノ酸の特徴</u> (Cronin and Chang, 1993)

1. <u>70種以上</u>のアミノ酸を検出(=構造が多様) 生物が持っていないアミノ酸、地球上では希少なアミノ酸を含む

2. <u>炭素数が多いアミノ酸ほど存在量が少ない</u> (指数関数的減少)	Compound(s)	Formula	Abundance (nmol g ⁻¹)
→ 小さい分子から大きい分子が生成	Glycine D-alanine	$C_2H_5NO_2$ $C_3H_7NO_2$	28.1–31.0 12.9–17.1
3. 分岐鎖構造が多い	L-alanine β-alanine Glycine + alanine	C ₃ H ₇ NO ₂ C ₃ H ₇ NO ₂	5.7-8.1
	Sarcosine α -aminoisobutyric acid b L-aspartic acid	$C_3H_7NO_2$ $C_4H_9NO_2$ $C_4H_7NO_4$	15.0-19.0
- 4. アミノ酸 (グリシンを除く)のD/L比が、 ほぼ <u>1 : 1</u>	L-glutamic acid D-glutamic D,L-proline Isovaline	$C_{5}H_{9}NO_{4}$ $C_{5}H_{9}NO_{4}$ $C_{5}H_{9}NO_{2}$ $C_{5}H_{1}NO_{2}$	1.9-4.6
5. 熱水抽出して得られる遊離のアミノ酸よりも、	Isovaline + valine L-leucine	C ₆ H ₁₃ NO ₂	4.6 - 7.5 0.8 - 1.6
<u>アミノ酸前駆物質</u> (アミノ酸が他の分子と結合し た状態)を <u>酸加水分解して得られるアミノ酸の</u> <u>方が多い</u>		(Gilmour, 2	2003, Review

6. 炭素・水素・窒素同位体比が非常に高い(δ¹³C = +23‰, δD = 1370‰, δ¹⁵N = 90‰) (Epstein et al. 1987) → 地球外起源の証拠。極低温環境を示唆

<u>隕石に固有なアミノ酸の特徴</u> (Cronin and Chang, 1993)

Amino acid detected 1. 70種以上のアミノ酸を検出(=構造が) 生物が持っていないアミノ酸、地球上で D-aspartic acid 2. 炭素数が多いアミノ酸ほど存在量が少な L-aspartic acid D-glutamic acid (指数関数的減少) L-glutamic acid D-serine → 小さい分子から大きい分子が生成 L-serine Glycine β-alanine 3. 分岐鎖構造が多い γ-amino-n-butyric acid + D,L-β-AIB^c D-alanine L-alanine D-B-amino-n-butyric acid L-B-amino-n-butyric acid α-aminoisobutyric acid (AIB) 4. アミノ酸(グリシンを除く)のD/L比が、 D,L-a-amino-n-butyric acide D.L-isovaline ほぼ<u>1:1</u> ε-amino-n-caproic acid (EACA)d D-valine L-valine 5. 熱水抽出して得られる遊離のアミノ酸より Total アミノ酸前駆物質(アミノ酸が他の分子と結合し

た状態)を酸加水分解して得られるアミノ酸の

方が多い

(Glavin et al. 2006)

6. 炭素·水素·窒素同位体比が非常に高い(δ¹³C = +23‰, δD = 1370‰, δ¹⁵N = 90‰) (Epstein et al. 1987) → 地球外起源の証拠。極低温環境を示唆

隕石中のアミノ酸のL体過剰と円偏光起源説

1997年 Murchison隕石から、 幾つかのアミノ酸の<u>L-体過剰</u> (~9.1%)が初めて発見された (Cronin and Pizzarello, 1997, *Science*)

宇宙物質のホモキラリティー
 (不斉) 起源研究の先駆け

・星形成領域中の右円偏光が過剰 のL-アミノ酸を誘発する仮説 (Bailey et al. 1998, *Nature*)を支持

・隕石中のL体過剰のアミノ酸が地球 に運ばれ、地球生命がL体のアミノ酸 を選択するようになったという考えも生 まれた

オリオン大星雲における「巨大な」円偏光の発見 (Fukue et al. 2010)

大質量星形成領域において太陽系が形成され、オリオンで観測されたよう な<u>大規模な円偏光に原始太陽系が飲み込まれ</u>、片方向の円偏光に照射 を受けた結果、アミノ酸(またはその前駆分子)にエナンチオマー異常が引 き起こされ、選択的に左型アミノ酸に偏ったのではないか

L体過剰が見られるものは、<u>α-メチル-アミノ酸</u>

他のアミノ酸と形成過程が異なるのだろうか? <u>分子レベル</u>安定同位体比質量分析 – <u>炭素</u>同位体比

Fig. 3. δ^{13} C values of Murchison α -amino acids (aa) versus C number. 2-H-aa (left to right): glycine [CH₂(NH₂)COOH], D-alanine, DL- α -aminobutyric acid, and D-norvaline [CH₃(CH₂)₂CH(NH₂)COOH]; 2-methylaa: α -aminoisobutyric acid [(CH₃)₂C(NH₂)COOH], DL-isovaline [CH₃CH₂C(CH₃)(NH₂)COOH], and DL-2-methylnorvaline [CH₃(CH₂)₂C(CH₃)(NH₂)COOH].

【共通点】 両化合物とも、<u>炭素同位体比</u> (δ¹³C)は炭素数の増加ととも に減少 → 炭素数の小さい分子に 反応性の高い¹²Cが付加し、 炭素数の大きい分子が生成 する

【相違点】 αメチルアミノ酸の方が、同じ 炭素数からなる化合物につい て、<u>δ¹³Cの値が高い</u> →前駆分子のδ¹³Cが高い(起 源が異なる)

Pizzarello et al. (2004)

隕石有機物研究のあゆみ: 現在(2000年初め~今日)

有機物だって隕石化学に仲間入りしたい!

→ 様々な分類に属する隕石有機物を分析し、その分子・同位体組成の バリエーションから初期太陽系の歴史と物質進化を読み解く

 Protoplanetry Disks in the Oxion Hebuls

 Hotoplanetry Disks in the Oxion Hebuls

コンドライト

隕石中のアミノ酸<u>濃度</u>と水質変成との関係

隕石	隕石グループ	アミノ酸濃度 (ppm)	
GRA95229 ^[13]	CR2	249	
EET92042 ^[13]	CR2	180	
Yamato791198 ^[28]	CM2	68	
Murchison ^[18]	CM2	17	
Murray ^[18]	CM2	12	アミノ酸の濃度は
ALH83100 ^[34]	CM2	10	水質変成の度合(タ
LEW90500 ^[34]	CM2	9	解・除去)に影響さ
Renazzo ^[15]	CR2	4.8	れる
Orguei1 ^[18]	CI1	4.2	
Ivuna ^[18]	CI1	4	
GRO95577 ^[13]	CR1	0.9	
Tagish Lake ^[5]	C2	< 0.1	

(Ehrenfreund et al. 2001; Glavin and Bada, 2001; Botta et al. 2002; Shimoyama and Ogasawara, 2002; Pizzarello et al 2006; Martins et al. 2007)

(薮田, 2010, 日本惑星科学会誌遊星人, 総説論文)

隕石中のアミノ酸<u>組成</u>と水質変成との関係

アミノ酸のホモキラリティーと母天体水質変成

D-イソバリン (Peak 9) と L-イソバリン (Peak 11) に注目

水質変成を受けた Orgueil(CI)とMurchison (CM)には<u>L体の過剰</u> (~18.5%)が検出された

が、<u>水質変成をほとんど</u> 受けていないQUE99177 <u>とEET92042(CR)では検</u> <u>出されなかった</u>(ほぼ、 D:L = 1:1)

(Glavin and Dworkin 2009)

その他の隕石有機物のホモキラリティー

Murchison (CM2),
 GRA 95229, LAP 02342 (CR2) から
 <u>乳酸のL体過剰(3-12%)</u>を検出

Pizzarello et al. (2010)

・<u>アミノ酸など可溶性有機分子を除去した後の隕石粉末、</u> および<u>不溶性有機物</u>から、なんらかのホモキラリティーを検出

←eeの低い生成物を反応系にあ らかじめ入れておくだけで、自己 触媒型不斉増幅反応が起こり、 はるかに高いeeの生成物が得ら れる

(しかし、有機物を全て除いた 鉱物成分からはホモキラリティー は未検出)

Kawasaki, Soai, Pizzarello et al. (2006)

不溶性有機物 (Insoluble Organic Matter, IOM)

<u>隕石有機物の大部分(>80%)</u> は<u>酸に不溶のMacromolecule</u>

分子量が高く、<u>複雑な構造</u> ・・・1~6環程度の芳香族炭素を主成分とし、 その間を、脂肪族炭素や酸素を含む官能基が架橋している

不均一な同位体組成

<u>グラファイトでもなく、地球上のいかなる炭素化合物とも似ていない</u>

不溶性有機物(IOM)の解剖法

コンドライトの<u>隕石グループ間</u>によるIOM構造的バリエーション

瞬間熱分解-GC/MS(破壊)

(Cody and Alexander, 2005; Yabuta et al. 2007)

コンドライトの<u>隕石グループ内</u>での有機構造的バリエーション

熱分解生成分子 O, S化合物に記録される水質変成

(Yabuta et al. 2009, Meteoritical Society Meeting)

コンドライトの<u>岩石学的分類</u>によるIOM構造のバリエーション

衝撃変成を経験した隕石有機物はユニーク

衝撃変成を経験した隕石有機物はユニーク

岩石学的タイプ、隕石グループ毎のIOM同位体組成 <u>始原的な(母天体変成をあまり経験していない)コンドライトグループほど、</u>

高い水素・窒素同位体比($\delta D, \delta^{15}N$)は極低温環境— 分子雲あるいは太陽系外縁起源

(Alexander, Fogel, Yabuta, and Cody, 2007)

隕石有機物の微小領域におけるD,15N異常濃集

コンドライトとCP (Chondriticporous)-宇宙塵は起源を同じくす る可能性

重水素と15Nの異常濃集領域が 必ずしも一致していない ・・・複数種の分子や化学反応が 同位体異常をもたらした

Tagish Lake Nanoglobules

Nakamura-Messenger et al. (2006)

隕石有機物の微小領域における¹⁷O, ¹⁸O, ¹³C 異常濃集

60Kより高い温度条件でのCO分子の光解離で説明できる → 太陽系起源

Hashizume et al. (2011)

スターダスト計画: 彗星塵の有機物分析

NASA 国際共同研究「STARDUST」計画 世界初の彗星塵サンプルリターン

1999.2.7打ち上げ、2004.1.2フライバイ

彗星塵捕獲トレイ

彗星塵捕獲トレイのキャニスター

Image of STARDUST spacecraft flyby Comet 81P/Wild2 (Credit: NASA) 2006.1.15. 地上に帰還 (Utah, USA) 横から

<u>シリカエアロジェル</u>:

空孔率が99.8%の 多孔質シリカ 彗星塵の探査機への 高速衝突(6.1 km/s)

による塵成分の損失や変成を最小限に抑える ための捕獲材

Polymer STXM (Scanning

<u>Transmission X-ray Microscope</u>), Beamline 5.3.2, Advanced Light Source

集光X線に対し、微小な試料を走査して 透過したX線の強度を検出することにより、 軟X線吸収スペクトルを取得、 試料の化学結合状態を定量評価する

ーつーつの彗星塵粒子が取り出され、 硫黄またはエポキシ樹脂に埋包後、ウルトラミクロ トームで薄切され、TEMグリッドに設置

OD (optical density) = $\ln(I_0/I)$

I: 試料透過後のX 線強度 I₀: 試料のない部分を透過した後の X 線の強度 Soft X ray 厚さ~100nmの薄片試料 を乗せたTEMグリッド

(Kilcoyne et al. 2003)

彗星塵粒子からの有機炭素の検出

有機炭素: C1s吸収端より前のエネルギー(280 eV)では透過し(白)、 C1s吸収端以降のエネルギー(290 eV)で吸収する(黒)領域

(Cody, Araki, Kilcoyne, Sandford, Yabuta et al. 2008b)

(Cody, Araki, Kilcoyne, Sandford, Yabuta et al. 2008b)

C-XANES

280

Sandford, Yabuta et al. 2008b)

0.25

日本の始原小天体探査と将来の宇宙有機物研究

Astrobiology

The Science That Drives Space Exploration

How does life begin and evolve? Does life exist elsewhere in the Universe? What is the future of life on Earth and beyond?

<u>個々の分野の"壁"をとりはらった複合領域</u>

Cosmic dust collection on ISS

Release 051101-1 ISAS/JAXA

HAYABUSA asteroid sample return<u>ed</u> on June 13, 2010 HAYABUSA 2 (pre-project)

(Photo and images: JAXA)

始原小天体有機物研究のこれから: <u>物質の相互作用</u>

▶有機分子は、隕石中のどこに、どのように分布しているのか?
 ▶有機物の、"ありのままの姿"はどのようか?
 ▶同一試料における、多様性や不均一性はないのか?

→ <u>分離操作を必要としない、その場分析開発が必要</u>

その場分析 vs. 分離したIOM

直接分析により見出される同一隕石中の有機物の多様性

Optical density image 2 x 2 μm

Optical density image 2 x 2 μm

不溶性高分子有機物の宇宙生命学的研究興味 (生命の起源は、必ずしも現在でいう"生体関連分子"である必要はなかったはず)

- ・隕石有機物の<u>主要成分</u>
- ・炭素質コンドライトだけでなく、
 普通コンドライト、エンスタタイトコンドライト
 にも<u>普遍</u>に含まれる(0.1-0.3%)
- (たとえばアミノ酸に比べて)分解耐性 が高い

- → 初期地球へ供給された(exogenous)生命原材料物質の有力候補といえる
- → 地球の構成物質となれば(intrinsic)、高分子有機物の大部分が脱ガス に関与し、habitableな初期大気組成を決定した原因となったかもしれない

始原小天体有機物研究のこれから: <u>物質の相互作用</u>

