MORPHOLOGICAL EFFECTS OF DUST GRAINS ON MID-IR EXTINCTION SPECTRA

October 15, 2009 CPS seminar

Akemi Tamanai (AIU Jena & TU Braunschweig) Harald Mutschke (AIU Jena) Jürgen Blum (TU Braunschweig) Alexander Krivov (AIU Jena) Chiyoe Koike (Osaka University)

Outline

- Dust grains
- Experiment
- Results
- Astronomical application
- Database
- Summary

Presence of dust grains appear especially in N and Q bands via spectroscopy.

At which abundance it occurs?

Sorts of Dust Grains Fe-rich olivine

The rocky planets form in high metallicity environments, where the dust grains are dominant (e.g. Shen et al. 2005)

Meteorite

Meteorites hold a key to understand a formation of dust grains.

- CAIs (calcium-aluminum inclusions) consist minerals which are predicted via a condensation model.
- Minerals in CAIs are condensed from protoplanetary nebula.
- ✓ Minerals in CAIs are
 - Spinel (MgAl₂O₄)
 - Corundum (Al₂O₃)
 - Rutile (TiO₂)
 - Hibonite (CaAl₁₂O₁₉)
 - Olivine
 - Pyroxene more....

Carbonaceous chondrite Allende (CV3.2)

NWA869 L4-6 Chondrite

Factors to influence on MIR band profiles

<u>Crystallinity</u>

Polymorph (_{多形}) 同一物質が複数の 異なった結晶構造 を取る

e.g. SiO₂ α-quartz (trigonal: 三方晶系) α-tridymite (orthorhombic: 斜方晶系) α-cristobalite (tetragonal: 正方晶系) <u>Chemical</u> <u>compositon</u> Mg, Fe, Al, Si, Ti, Ca, S, ...

e.g. Olivine San Carlos $Mg_{1.9}Fe_{0.1}SiO_4$

Sri Lanaka Mg_{1.6}Fe_{0.4}SiO₄

(Koike et al. 2003)

Experiment

Samples

<u>Silicate</u>

✓ Forsterite (Mg₂SiO₄)
✓ Fayalite (Fe₂SiO₄)
✓ Olivine (e.g. Mg_{1.9}Fe_{0.1}SiO₄)
✓ Enstatite (MgSiO₃)
✓ Diopside (CaMgSi₂O₆)
✓ Hypersthene ((Mg,Fe)SiO₃)
✓ Wollastonite (CaSiO₃)
✓ Kaolinite (Al₂Si₂O₇•2H₂O)
✓ Talc (Mg_{3.33}Fe_{0.1}Si₄O₁₀ (OH)₂)

 $\frac{AI_2O_3}{\checkmark Corundum (\alpha - AI_2O_3)}$ $\checkmark \gamma - AI_2O_3$ $\checkmark \chi - \delta - \kappa - AI_2O_3$

 $\frac{MgAl_2O_4}{TiO_2}$ (Spinel) $\frac{TiO_2}{CaTiO_3}$ (Rutile & Anatase) $\frac{CaTiO_3}{CaTiO_5}$ (Pervoskite) $\frac{Al_2TiO_5}{SiO_2}$

<u>www.elbe.astro.uni-jena.de</u>

<Medium effect>

 $\begin{array}{c} \boldsymbol{\epsilon}_{\rm m} \\ N_2 \rightarrow 1.0 \\ \text{KBr} \rightarrow 2.3 \\ \text{Csl} \rightarrow 3.0 \end{array}$

The influence of its electromagnetic polarization.

Tamanai et al. 2009

KBr : (Potassium Bromide) Mixing ratio 1:500 (sample:KBr) d=13mm ; mass=0.2g

CsI : (Cesium Iodine) Mixing ratio 1:500 (sample:CsI) d=13mm ; mass=0.22g

(TEM & SEM images: at Pathology w/ Dr. Nietzsche)

<Aerosol vs. Pellet Measurements>

Caused by:

Using different dispersion methods.

Particles may transform during the grinding procedure.

Powdered sample structure deformation caused by the high pressurization required for the Csl pellet technique.

Particle orientation

Dust Grains in Debris Disks

Dust sources → Replenished by larger objects (Weissman 1984)

- Comets strew over
- Planetesimals collide with each other

Vega-type stars are surrounded by circumstellar debris disks.

Discoveries:

- Some planets
- Planetary companions
- Planet candidates

(e.g. Mayor et al. 1995, Marcy & Butler 1998, Kürster et al. 2000, Lagrange et al. 2008)

Dust in Debris Disks

Question?

As the grain size increases above $1\mu m$, the spectral features of the infrared dust emission are broadened, and grow fainter.

The Vega-type stars have shown strong emission features in the mid-IR range.

Objective

- Extinction measurements of *large-sized particles* (2 50 μm)
- Mixture measurements --- How small-sized particles exert an influence on the extinction spectra when they are present in a same environment with larger ones (0.5 μm & 5 μm particles)
- Fe-rich olivine measurements

 $Cry-Mg_2SiO_4$ (< 1 μ m)

 $Cry-Mg_2SiO_4$ (~ 16 μ m)

Amorphous SiO₂ (d=0.5 & \sim 5 μ m)

Sample & Setup

Exp. 1 Large-sized particles

- Amorphous SiO₂ (monosphere)
- Crystalline Mg₂SiO₄

Exp. 2 Mixture

d=0.5 & d~5 μm amo-SiO₂ (complete monosphere shape)
 d=0.5 & d~5 μm amo-SiO₂ (5 μm particle are destroyed)

Exp. 3 Fe-rich Olivine

• $Mg_{1.6}Fe_{0.4}SiO_4$ (Sri Lanka) vs. $Mg_{1.9}Fe_{0.1}SiO_4$ (Peridot)

Aerosol generator FTIR Spectrometer

Exp. 1 Large Particles (SiO₂ monosphere)

Crystalline forsterite (Mg₂SiO₄)

Exp. 2 Mixture (monosphere vs. monosphere)

Exp. 2 Mixture (monosphere vs. irregular shape)

 $0.5 \ \mu m$ monosphere : crashed 5 $\ \mu m$ particles

- Survived 0.5 μm particles show a clear peak at 8.94 μm.
- The peak at 9.5 µm of the 5 µm particles is strongly influenced by the morphological changes (size & shape).

Exp. 3 Metal Content Olivine Mg_xFe_vSiO₄ Mg_{1.9}Fe_{0.1}SiO₄ (Peridot) Mg₁₆Fe₀₄SiO₄ (Sri Lanka) Peridot Sri Lanka (Aerosol measurements) 1.2 Peridot 11.07 11.11 More Fe Sri Lanka 1 Normalized Extinction 0.8 9.89 9.94 23.46 spectra shift to 19.04 23.91 0.6 19.04 longer WL 16.24 0.4 16.38 33.50 33.97 0.2 (Koike et al. 2003)

30

40

20

Wavelength [µm]

0

8

10

9

Astronomical Application

Name	Spec. type	Distance (pc)	Age (Myr)	planets	IRS spectrum	Remarks	Reference
β Ρίς	A5 V	19	12	+	+	-	Chen `07
n Tal		10	10	_	1	Wido bipany	Chon \06

Warm dust thermal emission: Infrared excess

- About 30 main sequence stars known to have warm-dust emission (i.e. at 10-50 µm)
- > a few objects have strong emission at λ ~10 μm (requires T > 200K)
- Best for mineralogical analysis

HD 169666	F5	51	2200	-	+	-	Abraham `08
HD 202406	F2 IV/V	-	-	-	-	-	Smith `08
HD 106797	A0 V	96	>10	-	-	-	Fujiwara `09

Some main sequence stars known to have warm dust

Spitzer IRS Spectra – what can be infered from them?

- Crystalline olivine bands vs. 9.8 µm amorphous silicate band
- Short-wavelength wing (9.3µm) indicates presence of pyroxenes or SiO₂
- Grain sizes: large grains (> 1 µm) should broaden 10 µm band to longer wavelengths lack of small grains should flatten the band strongly

 Small grains dominating (surprising because of blowout limits, but biased by selection)

Example of a large-grain emission spectrum

Detailed mineralogical analyses (Lisse et al.)

Lisse et al. 2009 (accepted)

HD 172555 (A5 star)

- 40 % silica and tektite,
- 35% olivines and pyroxenes,
- SiO gas, hypervelocity collision

HD 113766 (F3/5 binary)

- 29 % olivines, 14 % pyroxenes,12 % amorphous silicate
- 21 % FeS, 12 % ice
- Warm asteroidal dust (T=450K) at 1.8 AU
- Icy dust at 4-9 and 30-80 AU

Some concerns:

- Some of the identified minerals do not have distinct bands, they just contribute to continuum emission and they can hardly be distinguished.
- Most of the comparative spectra have been obtained by the embedded dust samples, which make a different band profile.
- The grain shape influences the band profiles.

Are such detailed fits possible at all?

Our approach:

- Dominating minerals first, consider grain shape effects (also composition and size effects) on sharp bands
- Use spectra of well-defined particulates (known shape and size) dispersed in N₂gas – aerosol spectra

First steps: Some own fitting tests for HD 69830 – IDL programme IRSA by Lutz Bornschein

🟌 IF-Spectrum Analyzier v0.91 🥘 👘			
Observed Spectrum HD69830_korr_410K	rowse] loops: I Fit 1 □ on	Fit 2 on Fit 7 on Status:	
1st LabSpectrum on jaj_8_40.dat Browse Temperature [K]: 300 Range 0 Step 1 Factor [1/100]: 50 Range 0 Step 1 Range 0 Step 1	2nd LabSpectrum on jastrosil_D93.LQS Browse Temperature [K]: 300 Range 0 Step 1 Factor [1/100]: 50 Range 0 Step 1	3rd LabSpektrum on Zubko_ACH2_001.LQS Browse Temperature [K]: 171 Range 0 Step 1 Factor [1/100]: 15 Range Step 1 Image Step 1	Clear Reload Help Print Quit
	Spectrum Spectrum 20 25 30 35 AVELENGTH [10-8 m]	 Hallo User! Load an observed spectum at first For further questions use the Help-Button! Spectrum "HD69830_korr_410K_subta successfully imported! 1st laboratory spectrum "aj_8_40. successfully imported! 2nd laboratory spectrum "aj_8_40. successfully imported! 2nd laboratory spectrum "aj_8_40. successfully imported! 3rd laboratory spectrum "zubko_ACH2_001_LQS" successfully imported! 3rd laboratory spectrum "Zubko_ACH2_001_LQS" successfully imported! Chi-square: 15,2512 Chi-square: 1,15084 Chi-square: 1,15084 Chi-square: 1,17586 	t! r.txt" .dat"

Some own fitting tests for HD 69830

Intention: simplification, search for real "hard facts" (constraints on dust mixture)

Used dust spectra:

- olivines and pyroxenes from aerosol measurements
- Koike et al. (2003) olivines
- amorphous silicates
- "carbon" for grey emission (may also mimic colder dust component)

Three-component model:

- Fo60+ olivine (synthetic, Koike)
- Astronom. Silicate (amorphous, D&L93)
- "carbon" cold dust

Best fit for HD69830

Database

Peak Search: to search for your desired spectra via inputting a peak position.

Basic information: Chemical formula, density, particle size, product info., etc...

<u>Plot</u>: Aerosol and CsI pellet measurements. Numerical data sets are downloadable.

Images: obtained by scanning and transmission electron microscopes (SEM & TEM)

Created by David Schmitz

	Laboratory Astrophysics Group of the AIU Jena
You are here 750 > AFC >	Database > Cado > Radio > TiO ₂
Database	Ti0 ₂
Orice	> laze information
7102	te des te Torspec
Spinel	and the second se
Peaksearch	Basic Information
Silemap	Classification: C ystellow Size: d < 1 pm
Contact	Chemical Formula: TO: Shape Frequery 2 condict adges Product Infor Athick Structure of the start
	Preparation: Origina Melting Point: 2103-5258 3
	Leference:
	Plot
	1.2 1.2
	- Peaks (µm) Aerosol 13.53 19.56 24.70 30.30
	Csi 15.61 23.77 28.13
	₽ 0.8
	g ² 0.6
	0 0.4
	0.2
	10 15 20 25 30 35 40 45
	Wavelength (µm)
	Add Automy Intentity in wardinggen, see Co. Block Accord (Moscourner, 9) Advent Tencinal
	Images
	a here some
	1.5µm
	SEM: Magnification 462 SEM: Magnification 252
	le officie a Allipe > 17 Cipa x Montes > Montes > 400 tes > 1217 tes a Millipa
	STATISTICS
	Story of a constraint of the second state of t
	sabe pografitation 1.9 K TEM: Mignification 5730 > 000mm x 000mm > 800mm x 600pm > 800mm x 600pm
	Socio Seguerrizante LA Vi Socia Seguerrizante LA Vi S

http://elbe.astro.uni-jena.de

Summary

Large-sized particles vs. Small-sized particles (Forsterite)> Peak positions are not strongly influenced by the particle size, but the bandwidth beyond the 11 µm peak is significantly broadened.

<*Mixture of Small- and Large-sized particles (SiO₂)*>

 Even mass of the 0.5 μm monosphere particles is 120x less than that of the 5 μm ones, the peak of the 0.5 μm particles clearly appears on the extinction spectrum.

<Metal Content in Olivine>

 Peaks of Fe-rich olivine take place at slightly longer WL in aerosol measurements as well.

<HD69830>

 Emission spectrum of HD69830 fits well with Fe-rich olivine spectrum obtained by aerosol measurement.