

Their Dust

since 1558

SEBASTIAN MÜLLER

Collaborators Alexander V. Krivov, Thorsten Löhne, Harald Mutschke & Martin Reidemeister

> Astrophysical Institute and University Observatory Friedrich Schiller University Jena Germany

Before Starting...

... let me introduce myself.

The observer group:

- Search for exoplantes
- Neutron stars

Prof. R. Neuhäuser

The laboratory group: Dr. H Mutschke

 Spectroscopy on dust from UV to mid-IR

The theory group: Prof. A. V. Krivov

- Protoplanetary disk modeling
- Giant planet formation

Now let's get started!

Outline

Definition of debris disksModeling of debris disks

- Classical Approach
- New Approach
- ≻Outlook
- ≻Summary

Debris Disks

An introduction

Information Sources

Findings:

~ 15 % of MS stars host debris disks

 → Similar frequencies for AFGK stars
 (earlier types my be slightly favored)
 (e.g. Trilling et al., 2007, 2008; Hillenbrand et al., 2008)

 Strength of excess decreases with age

 (Zuckerman & Song, 2004; Moór et al., 2006)

 No correlation with metalicity

 (Greaves et al., 2006; Beichman et al., 2006)

Debris Disk Modeling

It's all about dust!

Classical Approach

Classical Approach - Application

Investigation of the system HR 8799

- A5 V star at 40 pc
- IR-excess long known
- Special:
 3 planets discovered!

Results:

2009

- Favor a rather younger age (<< 50Myr)
- Nearly pole-on (20 30°)
- Evolutionary models suggest masses $\leq 7 10 \text{ M}_{Jup}$
- Planets stable for 5 13 M_{Jup} depending on systems orientation
 - \rightarrow higher masses require 2 : 1 resonance
- Planetesimal belts stable
- SED consistent with modeled planetesimal location \rightarrow dust masses of 1.10⁻⁵ and 4.10⁻² M_{Earth}

			0_yr — 1
2			3x10 ⁵ yr
. The			1x10 [°] ýr 🕇
- h i	-		3x10 ⁵ yr -·-· 1
10.			

Krivov et al., 2006

normal optical depth

New Approach Information Fitting Moteled debris disk Choose initial Compare to planetesimal belt observational data planetesimal belt planetes Attention: Collisional Model Planets Fitting only possible if no transport mechansism are included! dust disk inner gap (Löhne, Krivov & Rodmann, A&A, 2008; Krivov, Müller, Löhne &, Mutschke, ApJ, 2008) Scaling Analysis of Collisional Evolution **SED Utility** cumstellar Evolution

Kobe, September 10, 2009

00Myr

New Approach – 1st Approach

5 well observed disk systems around G2 V stars:

Sta

HD 37

Results:

 $\begin{array}{l} \begin{array}{l} & \text{HD 70F} \\ \text{HD 72F} \\ \text{HD 10F} \\ \text{HD 10F} \\ \text{HD 10F} \\ \text{HD 10F} \\ \end{array} \\ \end{array} \rightarrow \text{large (100-200 AU) and massive (0.2-50 M_{Earth}) Kuiper belt analogs} \\ \end{array} \\ \begin{array}{l} & \text{Jarge (100-200 AU) and massive (0.2-50 M_{Earth}) Kuiper belt analogs} \\ \end{array} \\ \end{array} \\ \end{array}$

Kobe, Septembe Krivov, Müller, Löhne & Mutschke, ApJ, 2008

آم 10¹

10⁰

10⁻¹

10-2

New Approach – 1st Approach

F81	14W Ardila et al., 2005				
		$M_{ m disk}{}^{ m a}_{ m (M_\oplus)}$	R _{belt} ^b (AU)	$M_{ m dust}^{ m c}$ (M_\oplus)	T _{dust} ^d (K)
1	This approach is cap	able of	easil	y an an an a	40 200
140 m	constraining both dust a	and pla	netes	imal	40 200 50
	propertie	es!			200 40
	~ 130 AU	(0.039) 0.027 (6.1) 6.1	3 100	8.0×10^{-7} 5.5×10^{-3}	200 50
and the second					
The second	To Earth				

New Approach – 2nd Application

Modeling of the Vega debris disk

Ao V star
Age of ~
Archetyp

Is the Vega debris disk in a steady-state evolution?
Independent of the start of the

- Many curiosities:
 - Fast rotator
 - Very massive dust disk
 - Disk structure in longer wavelengths' images
 - First discovered 'exozodi'

	equator	pole				
$R [R_{\odot}]^*$	2.873 ± 0.026	2.306 ± 0.031				
$T_{\rm eff}$ [K]**	7900^{+500}_{-400}	10150 ± 100				
$L_* [L_\odot]$	28^{+8}_{-6}	57 ± 3				
$\log(g[cm/s^2])^*$	4.074 ± 0.012	3.589 ± 0.056				
$M_* \ [M_\odot]^{**}$	2.3 ± 0.2					
Age [Myr]	350					
-JU Aufdenberg et al., 2006; Peterson et al., 2006						
	East offset	Absil et al., 2006				

offset from central star (arcsec)

lata

Wilner et al., 2002

New Approach – 2nd Application

Result: General Agreement with observations \rightarrow Vega disk observations not contradictious to steady-state dust production \rightarrow model constraints: – disk older than several 10 Myr - Intermediate luminosity required - cratering collisions essential

T [Myr] a_{inner} [AU] a_{outer} [AU] e_{max} i_{max} composition

collisions

 O_D , [erg/g]

b.

0.37 1.833

1.95

10-5

Combine to best fit

Ko Müller, Löhne & Krivov, ApJ, subm.

Outlook

If you want to make God laugh, tell him your future plans. (Woody Allen)

Waiting for Herschel

Apply new modeling approach:
Covers interesting wavelength region
Several systems expected to be resolved

Improve new modeling approach:
• Unknown sensitivity
→ other mechanisms need to be included

Coming to disk chemistry

- High resolution spectra in mid-IR provide insight in composition of disks (e.g. silicate features)
- Combine different expertise to develop a new analysis approach:
 - Mineralogy:
 - Observations:
 - Dynamics:

Summary

- Debris disks comprise dust and planetesimals but are observable only by the dust's (thermal) emission
- The classical way of modeling debris disks assumes simple analytical expressions for the dust distribution
 - Applied to the planetary system HR 8799 we could show that the SED supports our results from dynamical investigations
- We proposed a new way of modeling based on our collisional code ACE
 - A grid of thus modeled reference disks can be used to constrain both dust and planetesimal properties by "fitting" observed SEDs
 - Applied to the Vega system we could show that a steadystate collisional dust production is in agreement with the observations

Thanks for your attention! ご清聴ありがとうございました。

Kobe, September 10, 2009

Formation

