活動の総括：何を目指し、何を達成したか

向井正

21世紀COEプログラム「惑星系の起源と進化」報告会 2008.3.17-18、
神戸大学 瀧川記念学術交流会館
2003年5月
ヒアリング審査での発表
（我々は何を目指すのか）
Origin and Evolution of Planetary Systems

なぜ、今、惑星科学か？

神戸大学・大学院自然科学研究科
地球惑星システム科学専攻（2003年10月設立）
拠点リーダー：向井 正
惑星発見数の爆発的増加

人類の知り得た惑星の個数

水星、金星、火星

天王星、海王星（冥王星）

100年前

100年前

10年前

現在

太陽系外惑星発見

1781, 1846, 1930年

1995年

2003年

117
多様な惑星系の発見

太陽系外に発見された惑星系

謎の「灼熱木星」

未発見の地球型惑星
独自の惑星探査の開始

火星探査機NOZOMI
2003年12月火星到着
2004年1月より観測開始

拡点が運用するNOZOMI搭載
可視カメラ（神戸大学担当）
なぜ、神戸大学か？

天王星と輪、衛星（神戸大・伊藤ら）
神戸大学の惑星科学研究の着実な歩み

地球惑星システム科学専攻へ改組
COE「惑星系の起源と進化」申請

1977
地球科学科創設
（中村昇ら）

1990
惑星系講座開設
（向井ら着任）

1997
地球惑星科学科へ改組
（松田・中川・留岡ら着任）

2003
探査機のぞみ火星到達（向井ら）
小惑星探査機はやぶさ打上（向井ら）

系外惑星形成理論の提唱（中川）
望遠鏡すばる系外惑星探査（伊藤ら）
隕石粒子集合体の研究（留岡）

火星探査機のぞみ打上げ（向井）
探査機登載カメラの開発（中村昭）
降着円盤渦状構造の予言（松田）

宇宙・地球の普遍的視点「縄縄学」の提唱（伊東）

惑星始源物質の研究（留岡＠米国）
金星気球の立案（山中＠山口大）
惑星間塵の研究（向井＠金沢工大）
太陽系形成の京都モデル（中川＠京大）
降着円盤のシミュレーション（松田＠京大）
月の石・隕石の組成（中村昇）
<table>
<thead>
<tr>
<th>理論</th>
<th>探査・観測</th>
</tr>
</thead>
<tbody>
<tr>
<td>太陽系形成論標準モデル</td>
<td>火星探査機 NOZOMI Mars-Express</td>
</tr>
<tr>
<td>降着円盤シミュレーション</td>
<td>小惑星探査機 HAYABUSA</td>
</tr>
<tr>
<td>乱流・波動の力学</td>
<td>大型望遠鏡 すばる</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>実験</th>
<th>金星気象衛星 VCO 金星気球</th>
</tr>
</thead>
<tbody>
<tr>
<td>隕石・塵の電子顕微鏡分析</td>
<td></td>
</tr>
<tr>
<td>同位体分析</td>
<td></td>
</tr>
<tr>
<td>始原天体形成の衝突実験</td>
<td></td>
</tr>
</tbody>
</table>
本拠点形成の目的

1. 惑星系の多様性の理解
 「神戸モデル」の構築

2. 太陽系の起源・進化の理解
 惑星探査データの国際発信

3. 惑星の多様性の理解
 大気圏・固体圏の進化論
教育面の特色

● 新専攻設立による研究者養成カリキュラム
● 学外に開かれた教育システム
● 国際的な教育ネットワーク
（独ミュンスター大学、NASA、宇宙科学技術機構など）

国内外の若手研究者の育成
研究資金に関する計画

人・情報の確保・交流に資金を重点配分
若手研究者の公募による招聘

旅費11%
（招聘、観測など）

設備費33%
（FESEMなど）

人件費42%
（PD, RAなど）

その他14%
（消耗品、出版など）

平成16年度
2.3億円
何が5年後に達成されるか？

NOZOMIから見た地球（神戸大・向井ら）
太陽系外惑星観測の進展

● 木星型惑星の直接撮像
● 地球型惑星の存在の検証
（衛星搭載赤外線コロナグラフの開発）

すばる望遠鏡で見た太陽系外惑星系星雲
（神戸大・伊藤ら）
汎惑星系の起源の理解

「神戸モデル」
運命を分けた理由の解明

太陽系型惑星系

近接巨大惑星系

楕円軌道巨大惑星系

「灼熱木星」の大気構造
特異環境下の惑星大気構造・力学の解明

流体素片

流線

近接連星系のガス流
(Matsuda et al., 2000)

⇒ 「灼熱木星」の大気構造の理解
太陽系形成史の「ロゼッタストーン」の解読

系内小惑星・始原天体の探査

隕石衝突の組織
（電子顕微鏡像）

100 ミクロン

室内模擬実験

Tomeoka et al. (2003)
Nature 423, 60

太陽系の歴史

地球型惑星の誕生
「始原物質研究センター」（仮称）
（最新データ発信、世界の研究者のメッカ）

「神戸プラネット・スクール」
（次世代育成の独自カリキュラム）

「神戸モデル」
（21世紀の地球惑星科学の指導原理）

NOZOMIから見た地球と月（神戸大・向井ら）
ヒアリングで強調した事柄

1. 研究面
「神戸モデル」の構築・惑星探査データの国際発信・大気圏/固体圏の進化論

2. 教育面
国内外の若手研究者の育成

3. 事業
PD/RA雇用・院生海外派遣・プラネタリスクール・exchange program
COE予算

表1. COE予算の推移

<table>
<thead>
<tr>
<th>年度（平成）</th>
<th>直接経費（千円）</th>
<th>間接経費（千円）*</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>110,000</td>
<td>-</td>
</tr>
<tr>
<td>16</td>
<td>130,000</td>
<td>-</td>
</tr>
<tr>
<td>17</td>
<td>128,000</td>
<td>-</td>
</tr>
<tr>
<td>18</td>
<td>116,500</td>
<td>11,650</td>
</tr>
<tr>
<td>19</td>
<td>117,000</td>
<td>11,700</td>
</tr>
</tbody>
</table>

* 間接経費は平成18年度より支給

総額　直接　6億1500万円　間接　2335万円
表2. COE研究員の推移

<table>
<thead>
<tr>
<th>年度（平成）</th>
<th>新規採用への応募者数</th>
<th>新規採用数</th>
<th>繰続採用数</th>
<th>異動</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>37</td>
<td>10</td>
<td>-</td>
<td>2（ポスドク）</td>
</tr>
<tr>
<td>16</td>
<td>50</td>
<td>5(1)</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>17</td>
<td>16</td>
<td>2(1)</td>
<td>9(1)</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>公募無し</td>
<td>0</td>
<td>11(2)</td>
<td>5</td>
</tr>
<tr>
<td>19</td>
<td>公募無し</td>
<td>2</td>
<td>6(1)</td>
<td>-</td>
</tr>
</tbody>
</table>

()内は外国人研究員（内数）
COE-RA（リサーチアシスタント）

表3. COE-RAの推移

<table>
<thead>
<tr>
<th>年度（平成）</th>
<th>応募数</th>
<th>採用数</th>
<th>新規採用数</th>
<th>継続採用数</th>
</tr>
</thead>
<tbody>
<tr>
<td>15</td>
<td>20</td>
<td>20</td>
<td>20</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>23</td>
<td>14</td>
<td>7</td>
<td>7</td>
</tr>
<tr>
<td>17</td>
<td>24</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
<tr>
<td>18</td>
<td>26</td>
<td>15</td>
<td>9</td>
<td>6</td>
</tr>
<tr>
<td>19</td>
<td>21</td>
<td>16</td>
<td>12</td>
<td>4</td>
</tr>
</tbody>
</table>
表4. プラネタリスクール

<table>
<thead>
<tr>
<th>開催時期・場所</th>
<th>タイトル</th>
<th>LOC chair (LOC数)</th>
<th>講義数＊</th>
<th>外国人参加者数</th>
<th>日本人参加者数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2005. 7. 11-17 淡路島（夢舞台）</td>
<td>Origin of Planetary Systems</td>
<td>伊藤洋一(12)</td>
<td>L10 ポスター</td>
<td>42</td>
<td>48</td>
</tr>
<tr>
<td>2006. 12. 4-6 神戸大（灘川会館）</td>
<td>Small Bodies in Planetary Systems</td>
<td>Ingrid Mann (6)</td>
<td>L6 S1 ポスター</td>
<td>27</td>
<td>53</td>
</tr>
<tr>
<td>2007. 7. 16-20 舞子ビラ神戸</td>
<td>The Origin and Evolution of Planetary Materials</td>
<td>富岡尚敬 (9)</td>
<td>L6 ポスター</td>
<td>30</td>
<td>60</td>
</tr>
</tbody>
</table>

＊ L（講義）, S（セミナー）
Kobe International School of Planetary Sciences
Diversity of the Planets

第四回2007年7月
16-20日 舞子

第一回2004年9月
12-19日 淡路
Exchange Program

<table>
<thead>
<tr>
<th>Name</th>
<th>Institution</th>
<th>Topic</th>
<th>Duration</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maciej Konacki (Caltech, USA)</td>
<td></td>
<td>Planets in binary stellar systems</td>
<td>6-weeks (21 July-31 August, 2005)</td>
</tr>
<tr>
<td>Bunei Sato (COE researcher)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Oliver Krauss (Institute of Planetology, Muenster Uni., Germany)</td>
<td>Impact of radiation pressure and photophoresis on the dynamics of dust aggregates - Combination of numerical simulations and laboratory experiments</td>
<td>3 weeks (15 May-2 June, 2006)</td>
<td></td>
</tr>
<tr>
<td>Taku Takeuchi (Assistant Prof.) and Yasuhiko Okada (COE researcher)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nils Mueller (Institute of Planetary Research, German Aerospace Center (DLR))</td>
<td>Research for Venus atmosphere by Venus Express data</td>
<td>3 months (21 June-14 Sept., 2007)</td>
<td></td>
</tr>
<tr>
<td>George Hashimoto (Assistant Prof.)</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
そして、何を達成したか

・「惑星科学研究センター」設置（2007年4月）
・若手育成システムのノウハウ獲得（プラネタリスクール、Exchange program、院生海外派遣等）
事後評価

6月中旬～8月下旬
事後評価報告書による書面・合議評価

8月下旬～9月中旬
現地調査またはヒアリング（必要に応じて）

9月下旬
評価結果のまとめ 事前開示・異議申し立て

11月上旬
評価結果公表
事後評価報告書

様式 2
中間評価への対応とその結果

様式 3
研究活動実績、教育活動実績

様式 4
大学院生の在籍及び学位授与状況・就職先状況等

様式 5
経費使用状況