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Planetesimal Formation Mechanism(s)

The solar nebula was ~99% gas and 1% solids by mass.

The solids were originally present as small grains, of order

micrometer size.  Somehow, these assembled into large

km-scale planetesimals that were able to accrete by

collisions into planetary bodies, held together by self-

gravity.  The early stage of growth, from grains to km-scale

bodies, is still controversial.   The principal argument is

whether this stage of growth involved collisions and

sticking by non-gravitational forces (e.g., van der Waals

bonding, electrostatic, etc.), or whether this could be

accomplished entirely by gravity.  In either case, the solid

particles were strongly influenced by the presence of gas.



The solar nebula has a radial pressure

gradient, which partially supports it against 

the Sun’s gravity.  The nebular gas rotates at 

slightly less than the Kepler velocity.  The

fractional deviation from keplerian motion is

approximately the ratio of thermal energy in 

the gas to the gravitational potential energy,

of order 10-3. This implies an absolute 

velocity difference of a few tens of meters per 

second.

Vgas= (1-η)VK ∆V = ηVK

where η = −(∂P /∂ lnR) /2VK
2ρg



Assumed Nebular Properties

For this discussion, I assume a nominal configuration for

the nebula for quantitative examples.  The qualitative

conclusions are not dependent on the values chosen. For

simplicity the surface density of the gas σg and temperature

T are assumed to vary as power laws with heliocentric

distance R:

σg = 2500 R-1 g cm-2 T = 320 R-1/2 oK

where R is in AU.  This model contains ~ 5% of a solar

mass within 30 AU. η varies as R1/2, giving a constant

value of ∆V = 52 m s-1 at all R. Most results are obtained

for R = 3 AU.  The assumed abundance of solids (silicates

and metal) is 0.0034 times that of the gas.



Solid bodies are not supported by the pressure 

gradient.  In the absence of gas, they would move in 

keplerian orbits. They must move relative to the gas,

and are subject to drag.   Their dynamical behavior is 

controlled by the relative magnitudes of the 

gravitational and drag forces acting on them.

The residual gravitational acceleration (radial in the

direction of the Sun) is equal to

The vertical acceleration is

g z = GM Sun Z / R
3 + 4πG (ρ g + δ p )dZ

0

Z∫

∆g = 2ηgSun = 2ηGM Sun /R
2

where δp is the spatial density of solid matter.



A particle’s behavior is governed by the timescale of 

its response to a drag force, defined as

where m is the particle’s mass, V its velocity, and Fd is

the drag force.  For particles smaller than the mean

free path of gas molecules, the Epstein drag law gives

for a particle of diameter d and density ρp in gas with 

density ρg and sound velocity c. For larger particles, 

Stokes drag gives 

te = mV /Fd

te = dρ p / 2ρgc,

te = ρ pd
2 /18µ,

where µ is the molecular viscosity of the gas.



A particle is dynamically “small” or “large” if its response

time is less than or more than the Kepler time, i. e.,

teΩK < 1 or > 1.  Small particles are constrained to move

with the gas at its angular velocity.  They feel a residual

gravitational force that causes them to drift inward at a

rate

Large particles move in keplerian orbits.  They move faster

than the pressure-supported gas, and experience a

“headwind” of velocity ∆V = ηVK.  This causes their orbits

to decay at a rate 

Vr = te∆g=2teηGMsun /R
2

Vr = 2ηR /te
The radial velocity has a maximum value equal to ∆V
When teΩK = 1.





Gravitational Instability and Planetesimal

Formation

Settling in a laminar nebula will concentrate particles 

into a layer in the midplane.  If the layer becomes 

sufficiently dense, it is subject to gravitational 

instability; i.e., density perturbations will tend to 

collapse under their own gravity. Self-gravity

exceeds the tidal force exerted by the Sun at a critical 

density, which is approximately

δcrit = 3MSun / 2πR3 = 3ΩK
2 / 2πG

This density is necessary, but not sufficient.



Collective Effects

Particles settling to the midplane form a layer with a

density that eventually exceeds that of the gas (δ > ρg).
However, the density does not increase without limit.

In the dust-dominant layer, particles drag the gas at a

velocity closer to the Kepler velocity (although the layer

never attains keplerian motion).  The shear flow is 

unstable, and produces turbulence.  This turbulence 

inhibits further settling, even if the nebula as a whole is

laminar.  The thickness of the particle layer, and its density 

vs. altitude Z, are determined by a balance between

downward settling and turbulent diffusion upward along a

concentration gradient.



For small particles, with sizes less than a few cm, the
density of the layer due to shear-induced turbulence
is significantly less than the critical value for gravitational
instability, for plausible nebular parameters and normal
abundance of solids.  For example, in the nominal case
at 3 AU, the critical density implies a solids/gas ratio of
about 66, or ~ 2000 times the solar abundance of 
silicates
relative to hydrogen.

One solution is for the particles to grow by collisions to
larger sizes so they are not affected by the turbulence,
in which case gravitational instability is unnecessary. 
If particles cannot stick, some other means must be
invoked to suppress this turbulence or augment the
density of the layer.



Critical Density: Necessary, but not Sufficient

At 3 AU, δcrit ~ 10-8 g cm-3.  The free-fall time for gravitational

collapse is tff ~ (3π/32Gδ)1/2 ~ 1 year for δ = δcrit.

If particles are small enough to be coupled to the gas, they

cannot collapse in free fall, as this would be prevented by

compression of the gas (Sekiya 1983).  Instead, they must

settle through the gas.  The settling rate is tegr, where

gr = Gm/r2 ~ 4πGδcritr/3. The settling timescale is r/(tegr)
~ (220/sρs) years at 3 AU.  For compact (ρs = 2 g cm-3)
chondrule-sized (s = 0.1 cm) particles, the settling timescale

is ~ 103 years.  During this time, a condensation would move

through the gas at a velocity ~ ∆V.  The drag force on a

particle near the surface of condensation exceeds the

gravitational attraction, so the condensation would shed 

mass.



The critical density can be expressed as a critical

velocity, c*.  The dispersion relation for density

perturbations is

F(λ)= ΩK
2 λ2 −4π2Gσλ+4π2c2

where λ is the wavelength of a perturbation, which

grows with time if F(λ)<0. This requires c < c* = πGσΩ.
It is usually assumed that the half-thickness of the layer

H is proportional to the velocity dispersion; H ~ c/Ω.

If δ ∼ σ/H, then c* ∼ πGσ/Ω.  F(λ) has a minimum at

λ*= 2π2Gσ/Ω2.  Rotation stabilizes long wavelengths,

and the velocity dispersion stabilizes short ones. An

unstable layer will tend to break up into condensations

of mass ~ σλ*? ?



If the velocity dispersion is isotropic, then the density

of the layer is inversely proportional to the mean particle 

velocity.  It is usually assumed that the layer’s half-

thickness H is ~ c/Ω. The layer’s density is then δ ∼ σ/H,
and δ ∼ δcrit when c ~ c*= πGσ/Ω. For typical conditions

at 3 AU, σ = 2.83 g cm-2, c*~ 15 cm s-1, λ* ~ 2.5x109 cm,

σλ*2 ~ 2x1019 g.

However, velocities driven by gas drag are not isotropic.

Radial and transverse velocities are due to non-keplerian

motion of the gas, while vertical velocities are due to

turbulence.  If the out-of-plane velocity dispersion is less

than c*, the layer’s density may exceed the critical value,

but the in-plane dispersion may still be too large. c*
is analogous to an escape velocity; a particle will not be

gravitationally bound to a region of the layer. 



Velocity Dispersion and Consequences

Drag-induced radial velocities exceed c* for particles with

sizes between ~ 1 cm and 50 m.  This is not a problem for 

identical particles, as all would move together at the same 

rate.  However, if particles can grow to such sizes by 

coagulation, they will have some distribution about the

mean size.  Since the velocities are size-dependent,

there will also be a dispersion of velocities, which will act

to inhibit gravitational instability.  The velocity dispersion

is expected to be comparable to the mean velocity. 

This implies that if gravitational instability is to be

effective, it must occur among particles smaller than

~ 1 cm or larger than tens of meters.



Settling Rate

Particles settle toward the central plane of the

nebula. Small particles have settling rate

dZ /dt = tegz
Large bodies are in damped keplerian orbits.  Their

inclinations are damped by drag.  The “settling velocity”

is taken to be semimajor axis a times the rate of

damping. From Adachi et al. (1976), this is

dZ / dt = (0.85 Z / a + η ) / 2ηt e



Turbulence and Particle Response

In turbulence with eddy frequency ω, the

quantity teω is called the Stokes number St. If

the turbulence has velocity Vturb, the diffusion 

velocity of a particle is

Vdiff = Vturb/(1+St)
The diffusion coefficient is

Cdiff = (π/8)/V2
diff/ω = (π/8)V2

turb/ω(1+St)
The turbulence frequency ω is described by 

the Rossby number Ro, where ω = 2RoΩK.



Ekman Length

A characteristic length scale for the thickness of a

turbulent boundary layer of a disk rotating in a fluid

is the Ekman length LE , defined as

LE = (νt/Ω)1/2

where νt is the turbulent viscosity, and Ω = ΩK is the

rotation frequency.  After Cuzzi et al. (1993) we take

νt ~ (∆V/Re*)2/ΩK, where Re* ~O( 102) is a critical

Reynolds number.  Turbulence is assumed to decay

exponentially over a distance LE.



Richardson Number

The Richardson number (Ri) is a measure of 
the stability of a stratified shear flow.  If a 
fluid element is displaced vertically, work is 
done against gravity and buoyancy, while 
kinetic energy is extracted from the flow due 
to the mismatch of velocity due to the shear. 
Ri is dimensionless, defined as 

The flow becomes turbulent if Ri < 0.25.

Ri=gZ(−∂ρ /∂Z)/ρ(∂V /∂Z)2



Response of the Gas to Particle Loading

Nakagawa et al. (1986) solved coupled equations of

motion for particles and gas in an inviscid layer without

turbulence, for particles of arbitrary size.  Defining

D = (ρg+δp)/ρgte, the radial and transverse velocities of

particles (relative to particle-free pressure-supported gas)

are:

Vrp = 2ΩKηVK
te(D

2 +ΩK
2
)

Vφp = DηVK
te (D

2 +ΩK
2 )

where radial velocity is defined as positive inward.



The corresponding gas velocities are:

Vrg = −(δp /ρg )Vrp Vφg = −(δp /ρg )Vφp

These result from transfer of momentum from the

particles to the gas. The mass fluxes of particles

and gas are equal and opposite; the particles move

inward, while the gas moves outward.  We refer to

these motions as the laminar reaction flow.

For large (decimeter to meters) particles, the midplane

concentration of solids can be quite high; δp >> ρg,

and Vrp and Vφp can be large, so these gas velocities

may be large.



If the gas is turbulent, then the turbulent viscosity νt
produces another exchange of momentum, between

elements of gas at different elevations above the midplane.

Youdin and Chiang (2004) derive the stress tensor.

Assuming axial symmetry, the stress Pzφ is due to the

vertical gradient of azimuthal velocity Vφ:

PZφ = (ρg +δp )ν t (∂Vφ /∂Z )

and the radial velocity induced by this stress is

proportional to the gradient of that stress:

Vr ,turb = −R
(ρg +δp )

∂PZφ /∂Z
∂ΩK R

2 /∂R



Youdin and Chiang assumed the particles are perfectly

coupled to the gas.  For larger particles with imperfect

coupling, for δp we substitute δp/(1+St).

The gas in the midplane rotates more rapidly than that

at larger Z, so PZφ < 0. The shear removes angular

momentum from the gas at small values of Z and transfers

it to the gas at larger elevations.  The resultant profiles of

radial velocity show inflow near the midplane and outward

flow of gas near the top of the particle layer.  The net

radial motion of the gas at any value of Z is the sum of

the laminar reaction term and the velocity due to turbulent

shear.



Richardson Number and Turbulence Structure

Cuzzi et al. (1993) developed a computational fluid dynamical

model of 2-phase particle-gas system for large (10-60 cm

radius) particles.  These cases had high midplane densities

and steep velocity gradients, with fully developed turbulence

and Ri << 0.25. They argued that the Rossby number was 

large (20-80), and eddy frequency ω ?? 2Ro ΩK.

Sekiya (1998) assumed small particles well coupled to the

gas (St << 1), and argued that the onset of turbulence would

prevent further settling; the vertical density profile would keep

Ri at the critical value of 0.25. The incipient turbulence would

have an eddy timescale imposed by the rotation of the nebula,

ω ∼ ΩK.



Numerical Modeling of Particle Layers

• Divide layer into a series of levels, with assumed 
particle abundance at t = 0.

• Compute velocity of gas from mass loading

• Compute Richardson number Ri
• Assume turbulent velocity proportional to velocity 

difference between local gas and particle-free gas

• Assume eddy timescale is a function of Ri; compute
turbulent diffusivity

• Distribute particles vertically by settling and diffusion

• Iterate until a steady state is reached



The numerical model assumes that the turbulent velocity
at any level depends on the velocity difference between
the local gas and the particle-free gas at large Z, and the

Richardson number:

Vturb = F(Ri )(Vφg
2 +Vrg

2 )1/2

F(Ri) = 2Ro(1− 4Ri)2

For Ri < 0.25, and F(Ri) = 0 for Ri > 0.25. To fit the 

values of ω?used by Cuzzi et al. and Sekiya in the limits

of small and large Ri, I assume

1

ω
= 1

2RoΩK

+ [ 1
ΩK

− 1

2RoΩK

](4Ri)2

where



Caveats

For numerical stability, the Richardson number used is a
mass-weighted cumulative average, rather than the local
value.

To evaluate the turbulent stress tensor Pzφ, the velocity
gradient is smoothed over a distance LE

Turbulence generated locally at a given level is 
compared
with that generated at other levels, assumed to decay
exponentially on scale LE; the largest Vt and ω are used.

The computed radial and transverse velocities of the gas
are also smoothed over LE















































The effective radial velocity is defined as the net mass

flux, integrated over all values of Z, divided by the

surface density. The numerical model shows that for

a layer of small particles (teΩ < 1), the effective radial

velocity is proportional to particle size. The collective

drift velocity varies because the turbulence must have

the proper strength to counteract particle settling. Also,

the net radial velocity has a significant component due

to drift of particles through the gas within the layer, which 

is proportional to size (or te). The effective velocity is

somewhat less than that of an isolated particle of that 

size. This is due to the laminar reaction to the inward

drift and the decrease of ∆V resulting from the mass 

loading.









Removal of the gas can lead to increased density of the

particle layer; however, the effect does not depend

simply on the solids/gas ratio.  Removing gas decreases

its density, increasing the response time te and the Stokes

number - the particles behave as if they are larger.

removing 99% of the gas makes mm-sized particles

behave like decimeter-sized bodies in the standard nebula.

Their drift velocities are correspondingly larger, as are the 

turbulent velocities produced by shear. If the particles are

not identical, the velocity dispersion due to size differences

also increases. If more gas is removed, eventually even

small particles will have teΩK > , and velocities will 

decrease.



Plate Drag Approximation

Plate drag assumes that the layer can be treated as an

opaque solid rotating disk.  Usually it is assumed to be

rotating at the Kepler velocity, with a turbulent boundary

layer of thickness equal to the Ekman length LE.  The

turbulent velocity in the boundary layer is ~ ∆V/Re*,
giving a turbulent viscosity νt ~ ∆VLE/Re*. The turbulent

stress is then S ~ ρg∆V2/Re*. This stress acting on the

disk removes angular momentum, causing it to move

inward at a velocity dR/dt ~ S/σpΩK.

Note that the plate drag model implies that the radial

velocity is independent of particle size, and varies 

inversely with the surface density of the layer (mass

flux is independent of σp).



Drag Instability in the Particle Layer?

Goodman and Pindor (2000) proposed that drag acting

on a particle layer could produce secular instability.  If

the plate drag model is applicable, the radial velocity of

the layer varies inversely with surface density.  If a region

has a slightly higher density, then that region migrates

inward more slowly.  Particles from a less dense region

farther out will overtake it, adding to the density. A linear

stability analysis suggested that a particle layer would

rapidly separate into dense rings with widths comparable

to the thickness of the layer. 

This analysis depends on the plate drag assumption,

and neglects mixing due to nonuniform particle sizes.





The model shows no significant variation in effective

drift velocity with surface density of the particle layer

(less than a factor of 2 for σp varied by factor 100).

Any increase in surface density changes the structure

of the layer and the strength of turbulence in a manner

that keeps the mean velocity constant (mass flux is

proportional to σp rather than constant). There is no

tendency for particles to pile up at density perturbations

in the layer.  The drag instability mechanism appears to

depend on the plate drag assumption.



2-D Models with Coagulation 

Nebula divided into radial zones of heliocentric distance.

Each zone is divided into a series of levels, from the

midplane to 2 scale heights of the gas (assume

gaussian density profile with Z), with finer resolution

closer to the midplane to resolve the structure of the

particle layer (cf. Weidenschilling 1997).

Particles settle toward the midplane, and migrate

radially between zones.  Most motion is downward and

inward, but diffusion occurs along concentration

gradients in turbulence.



Particle size distribution modeled by logarithmic

diameter bins, from 10-4 cm to ~ 1000 km.

Particles have low-density fractal structure at d < 1 cm.

Start with all solids present as µm-sized grains,

mixed with gas (uniform solid/gas ratio) at all R, Z.

Particles collide due to thermal motions, differential

settling, radial and transverse motions due to drag,

and turbulence where present.

Simulations in outer nebula, beyond the “snow line,”

assume solids/gas ratio 0.015.



Collisional Outcomes

Outcomes of collisions depend on particle sizes and
impact velocities. 

Small particles have a velocity threshold for perfect
sticking, according to the model of Dominik and

Tielens

(ApJ 480, 647-673, 1997).

Particles have an assumed impact strength (erg/g) for

collisional disruption.  Disrupted bodies are assumed 

to have a power law fragment size distribution.

Projectile mass is added to target, and mass 

proportional to impact energy escapes as fragments.

There is a critical velocity for transition from net mass 

gain to net loss.



In most simulations, mass in each size bin is

transported between zones at a rate proportional

to the radial drift velocity due to gas drag.

The following shows results of a simulation without

radial drift.  The coagulation and settling are

computed within each zone, but no mass is

transported between zones.

The nebula is assumed to be laminar, except for

turbulence generated locally in the midplane by

shear.













Here we see a simulation with the same parameters,

but radial mass transport is included.
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Radial Migration and Redistribution of Mass

Meter-sized bodies move inward at radial velocity ∆V
~ 50 m/sec ~ 1 AU/century.  Unless growth through this

size range is rapid, such bodies travel a distance

comparable to the size of the nebula, and/or may be

lost into the Sun.

∆V and the size at which teΩK ~ 1 do not vary significantly

with heliocentric distance.  However, growth times

increase with distance due to the lower density of matter.

Thus, bodies that start at larger R move inward greater

distances before growing large enough to be unaffected

by drag.



Radial migration of growing ~m-sized bodies depletes

the outer nebula of mass and produces a surface

density distribution of solids that is steeper than that

of the gas.

At some distance, bodies can grow large enough (~ 

km)

to stop migrating.  Because the particle layer is very

thin in a laminar nebula, these bodies become efficient

traps for the smaller ones that are drifting inward from

larger distances.

Mass piles up, producing a distinct “edge” in the disk

of planetesimals.

The planetesimal disk is significantly smaller than the

extent of the original gas/dust nebula.



Migration in a Turbulent Nebula

Suppose the nebula has a source of turbulence in addition

to shear in the midplane particle layer, characterized by a

parameter α, such that

Vturb = cα1/2 ω = ΩK

For α<<1, turbulence does not affect collision velocities

significantly, but stirs the particle layer and decreases its

density.  This slows the growth rate of bodies through

the meter size range, causing them to migrate farther.

α = 10-6 gives results similar to α = 0.

The following shows the evolution of solids for α = 10-4.

















Turbulent concentration?
Cuzzi et al. (2001) have suggested an alternative

mechanism for planetesimal formation in a highly

turbulent nebula. In this model, particles are sorted 

in

small eddies that result from a Kolmogorov cascade

from the largest eddies to the inner scale of viscous

dissipation. Such eddies can concentrate chondrule-

sized particles, producing localized regions of higher

particle density.  For sufficiently energetic turbulence,

such regions can exceed δcrit.

However, the free-fall collapse time of these

concentrations Is much longer than the eddy lifetime

at this scale. The actual collapse time is likely to be

much longer due to gas pressure.  Thus, such

condensations are likely to dissipate, rather than

become planetesimals.



Summary and Conclusions

• The gas of the solar nebula does not rotate at the 
Kepler velocity due to pressure support.  This 
deviation has strong consequences for the behavior 
of solid particles and planetesimal formation.

• The settling of particles toward the midplane of the 
nebula is limited by turbulence generated by shear 
between the particle-rich layer and pressure-
supported gas.

• The maximum density of the particle layer is ~100 
times normal solar abundance, if the particles are 
small enough to be well coupled to the gas (~<cm). 
Higher densities are possible only if the particles are 
too large to be in chemical equilibrium with the gas.



• Formation of planetesimals from small particles by 
gravitational instability is difficult. The particle layer 
must reach a density ~100 times that of the gas.  Any 
general turbulence in the nebula will prevent this.
Even in a laminar nebula, shear-induced turbulence
limits the density to values comparable to that of the 
gas.

• Enhancement of the abundance of solids by about an 
order of magnitude can allow the layer to reach the 
critical density.  Such enhancement is unlikely, either
by inward migration of solids or localized drag 
instability mechanism.

• Depletion of gas is less effective than enhancement 
of solids for raising the density of the layer, due to the
increase of response time at lower gas density.



• Attainment of the critical density is necessary for 
gravitational instability, but not sufficient.  If the 
particles are coupled to the gas, collapse is inhibited 
by gas pressure.  Settling of particles within a
condensation takes much longer than the free-fall
collapse timescale.

• A layer of large (m-sized) particles can attain the 
critical density, and is not affected by gas pressure.
However, instability is inhibited by the dispersion of 
drag-induced velocities expected with a plausible size 
distribution of non-identical particles.



• Collisional growth of planetesimals is possible if the mechanical 
properties of particles are suitable.

• Aggregates of small grains should be compressible and
dissipate energy in collisions. The required level of impact 
strength is not clear.

• Sticking mechanisms are unknown, and may vary with 
composition (ice vs. silicates) and location.

• Growth may be favored if relative velocities are driven by 
differential gas drag, as most such collisions will involve bodies 
of very different sizes; the projectile may become embedded in 
the target.

• Turbulence is a problem for collisional formation of 
planetesimals, as modest values of α (~10-4) may result in
depletion of solids in the nebula by inward migration.

• Either way, it seems necessary to conclude that the solar nebula
was quiescent when planetesimals formed.
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