Comparative Exoplanetary Science

A Technical Challenge Now, A Galaxy of Worlds Later!

Ben R. Oppenheimer

Assistant Curator of Astrophysics American Museum of Natural History & Adjunct Assistant Professor of Astronomy Columbia University

- American Museum of Natural History
- 22 buildings on 16 acres in Manhattan, numerous field stations around the world
- 220 full time researchers in 9 academic departments
- Over 40 million scientific specimens
- Over 300 expeditions per year

- ~5 million visitors per year
- Division of Physical Sciences includes
 - 1. Earth and Planetary Science
 - 2. Astrophysics (~5 years old)

QuickTime[™] and a Microsoft Video 1 decompressor are needed to see this picture.

What is a Planet?

- There is no consensus on a scientific definition:
 - 1. Formation Mechanism
 - 2. Interior physics classification (fusion reactions)
 - 3. Wait and see until we have 1000s and classes will be obvious

Surprisingly this is a very controversial issue!

Planets are different from other celestial objects

- <u>Vogt-Russell Theorem</u>: "mass and chemical composition are sufficient to completely determine the structure, evolution and outward appearance of a star" (This principle has guided astrophysics theory well beyond stellar structure.)
- Planets have a diversity unmatched in astronomy

Where does the Vogt-Russell Theorem break down?

- The onset of complexity perhaps begins in the brown dwarf mass range:
- Mass-Composition-Age
- In coolest or lowest mass BDs, more complexity: The chemistry and SEDs are drastically affected by minor changes in composition

A few simple parameters are insufficient to determine a planet's salient features.

(This is why I am not a theorist, but I will offer a solution to this problem!)

Comparative Exoplanetary Science

- Observe individual planets in great detail
 - atmospheres, internal physics, geology and perhaps biology
- Observe as many planets as possible
 - At different ages, in different environments and with a broad range of parent stars (including pulsars and white dwarfs, giants and subgiants)
- A tiny taste of what we might learn:
 - What do 50 different $1M_J$ planets have in common?
 - What does a young (or old) Earth mass planet look like?
 - What is a 5 Earth mass planet?
 - Astrolinguistics

How do we do detailed observations?

- We must obtain images and spectra

 Some very limited techniques can do this now (individual spectral lines for eclipsing systems)
 Generally requires direct detection: a spatial
 - separation of the planet light from star light
- In the Future:
 - Surface imaging (very high resolution imaging)
 - Manned missions (requires some new physics)

Things you need to know to get into this game:

- 1. Fourier Analysis (Bracewell, 1986 is excellent)
- 2. Fourier and Fresnel Optics (numerous books)
- 3. Rudimentary Atmospheric Science (Kolmogorov)
- 4. Stellar Structure
- 5. Planet and Brown Dwarf Structure
- 6. Astrometry (milliarcsec level)
- 7. Photometry (AO PSF photometry, very little written)
- 8. Interferometry (Optical/Near IR and sub-mm/radio)
- 9. Control Theory
- 10. Signal Processing (can't be an astronomer without this)
- 11. As much electronics as possible
- 12. As much computer expertise as reasonable (don't get sucked in)
- 13. Photodetectors (very broad subject, read everything)
- 14. Mechanical engineering (basic static and dynamic)
- 15. Thermal engineering
- 16. Microelectronics (MEMs)
- 17. Laser physics and laser technology
- 18. Wavefront control (heritage from weapons systems)

19. HOW TO WRITE (practice, practice practice)

Imaging Exoplanets

Technical Requirements:

1. Angular Resolution

Distance	10 pc	15 pc	30 pc
Maximum Angular Separation: 1 AU orbit	100 mas	67 mas	33.3 mas
Required Telescope Diameter for observations at $\lambda = 1 \ \mu m$	2.1 m	3.1 m	6.2 m
Approx. No. Stars Known	325	877	3508

Imaging Exoplanets

Technical Requirements:

2. Contrast

For exact analog of the solar system at 10 pc, Jupiter: $> 10^8 \times$ fainter than Sun, 0.5 arcsec away Earth: $> 10^{10} \times$ fainter, 0.1 arsec away

100 x better than current imaging technology in any field

More Sophisticated Contrasts Needs

The Real Problem: Precise Control and Manipulation of Starlight

Brown Dwarf ~20-40x M_{Jupiter} 40 <u>AU Orbit</u> Size of Earth's Orbit

Star diameter: ~1 mas Jupiter diameter: ~100 μas Earth diameter: ~10 μas Pixel: 40 mas

An Earth-like planet will be 10^{10} to 10^{12} times fainter than the star it orbits and fractions of an arcsecond away from it.

Solar System Analog at 10 pc?

Saturn

Jupiter

 (22.5^{m})

Simulated 99.9999% Strehl Image in H Band 8 m Telescope $\begin{bmatrix} 0 \\ 0 \\ 0 \\ -1 \\ -2 \\ 1.2 \\ 1.2 \\ 1 \\ 0.8 \\ -2 \\ 1.2 \\ 1.2 \\ 1 \\ 0.8 \\ 1/\lambda \\ (\mu^{-1}) \\ 0.6 \\ 0.4 \\ 0.2 \\ 0.4$

9"

Sun, suppressed at 10⁻⁶ total luminosity

Reality: a Star from the Palomar 5-m

Reality

2.5 Arcseconds

I-band (.8µm)

S ~
$$e^{-2\pi\sigma^2}$$

Uncorrected image: S ~ .5% S = 80% means σ ~ 1/14 rms WFE

How Do We Do This?

Achieve extremely high image quality

Block the star optically With interferometry

Adaptive Optics

Real K band data from Palomar AO System

QuickTime™ and a Animation decompressor are needed to see this picture.

Adaptive Optics

QuickTime[™] and a Animation decompressor are needed to see this picture.

Integrated images

Stellar Wavefront at **Telescope Pupil**

Deformable Mirror

Corrected Wavefront

Low-Order AO

Image

Corrected Image (S ~ 40%) ₂₄

Stellar Wavefront at **Telescope Pupil**

Deformable Mirror

Corrected Wavefront

Corrected Image (S ~ 96%) ₂₅

AO Point Spread Functions

Take a Break from listening to me

- 1. What is the general expression for the radius out to which an AO system can correct a PSF? Use telescope diameter D, linear number of actuators across aperture N_{act} , and λ
- 2. What is the wave front error in nm in the H-Band (1.6 microns) for 96% and 99.99% Strehl?

Bernard Lyot, 1939, Pic du Midi Quanititative theory: Sivaramakrishnan et al. (2001) 28

Adaptive Optics Coronagraphy

What Contrast does this get you?

CfAO EXAOC team(2005)

Speckles are <u>The</u> dominant source of noise!

What is a speckle?

Think Fourier

sin(x) <=> 2 δ's

First order Pupil: $exp(i\phi) \sim 1 + i\phi + ...$ Image: $\delta(0) + FT(sin) + ...$

Higher order The ... terms create higher frequency harmonics

Speckle theory - approach

THE ASTROPHYSICAL JOURNAL, 596:702-712, 2003 October 10 © 2003. The American Astronomical Society. All rights reserved. Printed in U.S.A.

THE STRUCTURE OF HIGH STREHL RATIO POINT-SPREAD FUNCTIONS

MARSHALL D. PERRIN¹ Astronomy Department, University of California, Berkeley, CA 94720

ANAND SIVARAMAKRISHNAN AND RUSSELL B. MAKIDON Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218

BEN R. OPPENHEIMER Astrophysics Department, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024

AND

JAMES R. GRAHAM Astronomy Department, University of California, Berkeley, CA 94720 Received 2003 March 28; accepted 2003 June 20

ABSTRACT

We describe the symmetries present in the point-spread function (PSF) of an optical system either located in space or corrected by an adaptive optics (AO) system to Strehl ratios of about 70% and higher. We present a formalism for expanding the PSF to arbitrary order in terms of powers of the Fourier transform of the residual phase error over an arbitrarily shaped and apodized entrance aperture. For traditional unapodized apertures at high Strehl ratios, bright speckles pinned to the bright Airy rings are part of an antisymmetric

Speckle theory - approach

Sivaramakrishnan, Lloyd, Hodge and Macintosh (2002) ApJL

Aperture A(x,y): real function

Phase $\phi(x,y)$: real function

Electric field over aperture: $A \exp(i\phi) = A A_{\phi}$

For $\phi < 1$ truncate expansion of $\exp(i\phi)$ at second order in ϕ :

$$A_{AO} = AA_{\phi} = A(1 + i\phi - \phi^2/2 + ...).$$

FT this to get image plane electric field

Speckle theory - results

Sivaramakrishnan, Lloyd, Hodge and Macintosh (2002) ApJL

A, a are FT pairs Φ , ϕ are FT pairs star is convolution

$$p_{AO} = p_0 + p_1 + p_2$$

= aa^*
 $-i[a(a^* \star \Phi^*) - a^*(a \star \Phi)]$
 $+(a \star \Phi)(a^* \star \Phi^*)$
 $-\frac{1}{2}[a(a^* \star \Phi^* \star \Phi^*) + a^*(a \star \Phi \star \Phi)],$
 $p_1 = -i[a(a^* \star \Phi^*) - a^*(a \star \Phi)] = 2\mathrm{Im}[(a(a^* \star \Phi^*))],$
 $p_2 = (a \star \Phi)(a^* \star \Phi^*) - \frac{1}{2}[a(a^* \star \Phi^* \star \Phi^*) + a^*(a \star \Phi \star \Phi)].$

First order pinned speckle, second order halo, second order Strehl term Enables analytical proof that "Speckle Decorrelation" idea does not work

Speckle theory - pictures

Speckle theory - infinite order expansion

Perrin, Sivaramakrishnan, Makidon, Oppenheimer, Graham (Oct 2003) ApJ

$$A_{AO} = AA_{\phi} = A(1 + i\phi - \phi^2/2 + ...)$$
$$a_{ao} = \sum_{k=0}^{\infty} \frac{i^k}{k!} (a \star^k \Phi),$$

 $p_{AO} = \sum_{k=0}^{\infty} \sum_{j=0}^{\infty} \frac{i^k}{k!} (a \star^k \Phi) \frac{(-i)^j}{j!} (a^* \star^j \Phi^*).$

no **net** power is contained in any term except the zero-order perfect PSF term

$$p_{AO} = \sum_{n=0}^{\infty} \sum_{k=0}^{n} \frac{i^k (-i)^{n-k}}{k! (n-k)!} (a \star^k \Phi) (a^* \star^{n-k} \Phi^*).$$

$$p_n = i^n \sum_{k=0}^n \frac{(-1)^{n-k}}{k!(n-k)!} (a \star^k \Phi) (a^* \star^{n-k} \Phi^*),$$

Shows why pupil apodization reduces speckle noise (think Fourier space! Outer edges of aperture=high freq. In pupil plane--- p_2 Halo), and 'shaped pupil' approaches are extra-sensitive to aberrations

Speckle Theory: λ **Dependence**

QuickTime[™] and a Animation decompressor are needed to see this picture. Data Cube Movie Across an astronomical filter

10 nm Steps S ~ 90% λ = 1.6 μm (1.0 at left)

Types of Coronagraphs

Туре	PSF at 0.4" (0 nm WFE)	Alignment Tolerance	Manufacturable	Proven Technique?	Observing Efficiency	Other
Lyot	10-6	Easy	Yes	Yes	40-50%	Excludes most science goals
Apodized Lyot	10-7	Easy 2% of pupil	Yes in visible (1950) Medium-risk	AP no LC yes	50%	
Band limited	In theory, infinite for a given λ	Easy	No in IR High-Risk	Yes in visible No in IR	10% within $10\lambda/D$ 50% outside	Throughput is poor
Shaped Pupil	10 -7	Easy	<10 nm precison	Proven only at extremely high SR	10 %	Excludes most science goals
Phase Mask	10 ⁻⁷	Tilt must be < 30 μas	Prototype exists but high risk	Yes at 10^4 at $4 \lambda/D$	80%	Vibration sensitivity
Pupil mapping	10 ⁻⁷	Very Hard	Expensive High-Risk	Low performance prototype	100%	Excludes most science goals without reversing PR
Pupil nulling	10-7	Hard	Probably but High-risk	Yes at 10 ⁻⁴ in visible in lab	20-50%	Excludes some science goals

Extreme AO + APLC

Coronagraph by Soummer (ApJL 2005) PAOLA AO simulation by Jolissaint (2005) Spatially-Filtered Wavefront Sensing AO by Poyneer & Macintosh (JOSA 2004)

Extreme AO + APLC + IFU

Control Radius Carved Out

IFU provides Speckle removal

PSF components - ExAO + APLC

PSF components - ExAO + IFU

I=7 one hour exposure 5-sigma detection CfAO EXAOC team(2005)

Summary: Qualitative

- Control your Wave Front Errors
- Get rid of as much starlight as practical
- For residual wave front errors, get as much information as possible so you can remove them in post processing

Summary: Quantitative

- Starlight Removal:
 - Lyot Coronagraph removes 99% of starlight
 - Modified Lyot can remove 99.95% (apodizers)
 - Novel designs do better but require Strehl ratios near 99% (not obviously achievable on ground, perhaps in space)

Summary: Quantitative

- Residual Wave Front Errors must be less than about 1 nm for 10⁻⁸ contrast without differential image subtraction or spectral information on speckles
- Spectral imaging can improve contrast by up to a factor of 100 (infinite signal to noise, see Sparks and Ford 02)

Summary: Space vs. Ground

- Space is not a perfect solution to these problems
- Wave front errors persist and must be controlled, but are much slower
- May be possible to control wave fronts at angstrom level or better with modest advances in technology. Needed for 10⁻¹⁰-10⁻¹² contrast (TPF)

Coming up after the break: What is it like to do this for a living?

THE LYOT PROJECT

American Museum 🕆 Natural History 🌮

TOWARD EXPLORATION OF OTHER WORLDS

Ben R. Oppenheimer, Andrew P. Digby, Douglas Brenner, Laura Newburgh, Kaitlin Kratter, Sasha Hinkley AMNH

Russell B. Makidon, Anand Sivaramakrishnan, Remi Soummer Space Telescope Science Institute

James R. Graham, Marshall Perrin University of California at Berkeley

James P. Lloyd Cornell University

Jeffrey R. Kuhn University of Hawaii

Lewis C. Roberts, Jr. The Boeing Company

http://lyot.org

Air Force Maui Optical Site

Atop Haleakala, Maui 10,000 ft Observatory Since early 1950s

> Leader in AO Development

US Air Force Advanced Electro-Optical System (AEOS)

- 3.6 m telescope
- Atop Haleakela (Maui)
- StratCom's Space Surveillance Program
- 941 actuator deformable mirror $N_{act} = 32$ (highest in world)
- 30% Strehl at I-Band
- 80-90% at H-Band

• Tracking speed 17 degrees/sec

QuickTime™ and a H.263 decompressor are needed to see this picture.

Planet and Brown Dwarf Sensitivity

58

Protoplanetary Disks

10 Myr A Star 100 pc

Hubble ACS image

Clampin et al. 2003

Lyot Project Coronagraph

The AMNH Astrophysics Lab

Class 10000 Clean Room

Zygo GPI-xHR

Expanding Now: Class 1000 CR CMM

Initial Assembly

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture

In Lab Performance

96% Strehl at H band (1.6 microns)

65

Science Grade Mask

334 microns

Microscope Image by Jacob Mey and Charlie Mandeville (AMNH EPS Microprobe Lab)

245 um mask Pure Nickel with Gold Coating

Confocal Microscopy

SiC may be A better solution

Unocculted Images

QuickTime™ and a Animation decompressor are needed to see this picture **S ~ 90%**

Composite Log Scale

Core: .2 s 2.5" Wing: 2 s

unocculted H band image of delta Hercules (V = 3 mag. A3IV, 25 pc)

Lyot Project first light: 85-90% Strehl

Oppenheimer, Digby, Perrin, Roberts, Sivaramakrishnan, Soummer & Makidon (2005)

941-channel AO on 3.6m AEOS telescope Occulter **0.35**" in H-band (**4** λ/**D**) March 2004

20

Coronagraphic image of 55 Cnc Residual speckles dominate noise •Speckle pinning •Speckle amplification •Symmetric halo speckle

55 Cnc

Calibration Binary

15 min Total Int. Time

H-Band

Delta Herculis

H band 5" FOV 150 20 sec images

Scintillation ~10% (I)

 $\Delta H = 11 \text{ mag at } .3"$ in single exposure

14 in 20 minutes

QuickTime™ and a Animation decompressor are needed to see this picture.

5"

Lyot Project Data in Perspective

Dual Mode Imaging for Polarimetry: Derivation of Q and U Stokes Parameters

Simultaneous Multiwavelength Data

An IFU for the Lyot Project!

Other Projects

Gemini Extreme AO Coronagraph

Led by Bruce Macintosh (exaoc.ucolick.org) with AMNH building the coronagraphic optics (funding pending)

VLT Planet Finder Led by Jean-Luc Beuzit (funding pending)

New High-Order CIAO on Subaru? Led by Motohide Tamura

TPF-Coronagraph Mission Science goals being defined now (STDT and see M. Turnbull's poster)

I haven't even mentioned any of the interferometry projects!

Resolving Earth

AD 2060: Time Resolved Exoplanetary Surface Imaging

QuickTime[™] and a YUV420 codec decompressor are needed to see this picture.