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FIGURE 3.2 Possible sequence of events in the terrestrial planet region. (op left)
Growth of dust graing into ~10-km-diameter “planctesimals™ through nongraviational
forces (sticking). (top right) Runaway growth of planctesimals, moving in nearly circu-
lar, coplanar erbits, 1o form ~2000-km-diameter “planctary embryos™ on a 10%-year time
scale. (botbom lefi) Removal of gas from the inner solar system on a 109- to 10%-year time
scale. (bottom right) Mutual perturbation of planctary embryos into ceceniric orbits and

their merger to form the present planets on a 10%-year time scale. Asteroids are relics of
similar processes in the present asteroldal region that failed to complete the munaway
growth stage (top right) as a consequence of either gravitntionn] or collisionn! removal of
most of the ather bodies in that region. Jupiter's perturbations, beginning at about § = 10%
years, were primarily responsible for this clearing of the asteroid belr.
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FiG. 1.—JHKL excess/disk fraction as a function of mean cluster age. Ver-
tical error bars represent the sttistical’ vV errors in our derived excess/disk
fractions. For all star-forming regions except NGC 2024 and NGC 2362, the
horizontal error bars represent the error in the mean of the individual source
ages derived from a single set of PMS tracks. The age error for NGC 2362
was adopted from the literature. Our estimate of the overall systematic un-
certainty introduced in using different PMS tracks is plotted in the upper right
corner and is adopted for NGC 2024, The decline in the disk fraction as a
function of age suggests a disk lifetime of 6 Myt
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GAS GIANT PLANET FORMATION

* Standard core accretion mechanism of gas giant planct

formalion requires oy &~ 10 gecm™2 at 5 AU (Pollack et al.
1196)

" I'or gas to solids ratio of 100:1 (i.e., 50% condensed solid-

s}, 0, ~10° gcm™2 at 5 AU

* A solar nebula with midplane temperature beyond 5 AU
in the range (~ 25 K to ~ 50 K) indicated by cometary
compositions may be marginally gravitationally unstable

* What is the three dimensional evolution of a marginally
unstable nebula?
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Mayer et al. 2002
disk instability
model after 800 yrs

[SPH with simple
thermodynamics]

time evolution of
clump orbits
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Disk Instability?

In order for disk instability to be able to form giant
protoplanets, there must be a means of cooling the disk on
the time scale of the instability, which is on the order of the
orbital period.

Radiative cooling in an optically thick disk is too inefficient
to cool the disk’s midplane, as its characteristic time scale is
of order 30,000 yrs for the solar nebula at 10 AU.

The only other possible mechanism for cooling the disk
midplane Is convective transport — can it do the job?
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Vertical Convective Energy Flux

1. For each hydrodynamical cell, calculate the vertical
thermal energy flux:

F. =-Vya AEp

conv

where v, = vertical velocity, A = cell area
perpendicular to the vertical velocity, E = specific
Internal energy of cell, and p = cell density.

2. Sum this flux over nearly horizontal surfaces to find
the total vertical convective energy flux as a function
of height In the disk.
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Rapid Convective Cooling? (Boss 2004)

Radiative transfer is unable to cool disk midplanes on the
dynamical time scale (a few rotational periods).

Convective transport appears to be capable of cooling
disk midplanes on the dynamical time scale.

Evidence for convective transport includes Schwarzschild
criterion for convection, convective cells seen in velocity
vector fields, and calculations of the total vertical
convective energy flux.

Assuming that the surface can radiate away the disk’s
heat on a comparable time scale, marginally
gravitationally unstable disks should be able to form giant

protoplanets.



Habitable Planets per System

Chambers (2003)

[defined as terrestrial planets with masses greater that 1/3 that
of Earth and Earth-like orbits]

Gilant Planet System Giant Planet Formation Time:

Configuration: 0 Myr 3Myr 10Myr
Normal Jupiter and Saturn e 1.0 0.6 0.7
Jupiter only, mass x 3 « 038 0.5 0.7
Jupiter only, eccentricity = 0.4 e 0.1 0.2 0.4
Jupiter & Saturn, bothmassx3 ¢ 0.0 0.0 0.0
Jupiter normal, Saturnmassx3 ¢ 0.3 0.6 04

Jupiter & Saturn, both mass/3 e 038 0.9 0.9
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Remarks on Modeling the Formation of Uranus and Neptund
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We have studied two scenarios for the in situ formation of Uranus
and Neptune from a hundred or so sub-Earth-sized planctary em-
bryos initially on low-inclination, nearly circular orbits beyond
Saturn. We find that giant planets do not form during integrations of
such systems. Almost no accretion occurs at all because the embryos
are dynamically excited by each other and the gravitational effects
of Jupiter and Saturn on a timescale that is short compared to the
collision timescale. This produces large eccentricities and inclina-
tions that significantly decrease the collisional cross section of the
cmbryos because it decreases the effects of gravitational focusing.
As a resul t planets do not grow. These simulations show that
the standard model for the formation of the Uranus and Neplune
is most likely not correct. @ 2001 Academic Press

Key Words: solar system: formation.
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Boss (2003) disk instability model after 429 yrs, 30 AU radius
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A new paradigm for forming the giant planets rapidly:

» Marginally gravitationally-unstable protoplanetary
disk forms four or more giant gaseous protoplanets
within about 1000 years, each with masses of about
1 to 3 Jupiter-masses

» Dust grains coagulate and sediment to centers of
the protoplanets, forming solid cores on similar time
scale, with core masses of no more than about 6
Earth-masses per Jupiter-mass of gas and dust
(Z=0.02)

» Disk gas beyond Saturn’s orbit iIs removed Iin a
million years by ultraviolet radiation from a nearby
massive star (Orion, Carina, ...)

Continued...
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Protoplanetary Disks in the Orion Nebula
Hubble Space Telescope « WFPC2

Throop (SWRI, and C.R. O'Dell (Vanderbilt University
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» Outermost protoplanets are exposed to FUV/EUV
radiation, which photoevaporates most of their
envelope gas in about a million years or less

» Outermost planets’ gas removal leads to roughly
15-Earth-mass solid cores with thin gas
envelopes: Uranus, Neptune

» Innermost protoplanet is sheltered by disk H gas
gravitationally bound to solar-mass protosun and
so does not lose any gas: Jupiter

» Protoplanet at transitional gas-loss radius loses
only a portion of its gas envelope: Saturn

» Terrestrial planet region largely unaffected by UV
radiation







sandford’ (1996) Inventory of interstellar materials available for formation of the solar system

GRAIN MANTLE GROWTH AND EVOLUTION
GRAIN SURFACE REACTIONS PRODUCE “SIMPLE" MOLECULAR MANTLES

b)) HHz <1

(a) HHy »1

cog

i
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WITHOUT SOME FORM OF ENERGETIC PROCESSING, MANTLES
WILL BE MADE UP PRIMARILY OF SIMPLE MOLECULES

FiG. 4. Schematic drawings of the types of mantles expecied to be present on the dust in dense molecular
clouds. (a) In regions where the local H/H, ratio is large, various alomic and molecular species will accrele
from the gas phase. Accreted 11 is 51.t|Ti=I¢nﬁ:1r mobile that it can "hop" along the surface of the grain and react
with other accreted atoms and molecules. As a resull, simple hydrides like Cll,, N, and HyO will dominate.
(b) In contrast, low H/H; ratios result in the production of mantles rich in H-delicient species like CO, Oy, and
M,. (c) lrradiated and thermal processing of ice mantles creales more complex molecular specics and can

resull in the production ol more relractory "organic” mantles.
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20 AU radius disk, 0.09 solar masses, radiative transfer

Need an oblique shock front to have large enough

velocity difference to heat gas and form chondrules
... s 20202020 B
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Mixing and Transport of Chondrules
and CAls in the Solar Nebula

» Assembling the chondrites appears to require the outward
transport of the CAls from the inner nebula to the asteroidal
region.

» Outward transport of CAls could be via X-wind above the disk or
via gas motions within a marginally gravitationally unstable disk.
 Explaining the thermal annealing of crystalline silicates observed
In comets and protoplanetary disks may require inward and
outward transport over significant distances in the disk.

 Can solids in a gravitationally unstable disk be transported
inward or outward through the region of maximum gravitational
Instability, or does this unstable region present a barrier to large-
scale transport?
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t =0.0 Myr (CAlSs)

magnetically dead

10 AU



t =0.01 Myr (CAls)

disk instability
rapid in/out transport

10 AU



t =0.02 Myr (CAls)

Jupiter-mass clumps

rapid in/out transport

0.1 AU



t =0.03 Myr (CAls)

Jupiter-mass clumps




t =0.03 Myr (CAls)

Jupiter-mass clumps

chondrules formed, CAls
reprocessed by shock heating,
solids transported in/out

10 AU



rapid in/out transport

t = 1 Myr (CAIs)

orbit, outer ice giants result

nearby O star photoevaporates
outer disk gas down to Saturn’s

10 AU



t = 3 Myr (CAlSs)

<) DTS © ©

Inner disk gas accretes onto
protosun, km-sized and larger
solids left behind to form inner
planets and asteroid belt

0.1 AU 1AU 10 AU



Formation of Planetary Systems I.: Theory vs. Theory

» Disk instability can form gas and ice giant planets in the
shortest-lived protoplantary disks

» Terrestrial planet formation through collisional accumulation is
permitted and even accelerated

» Implies that Solar System may have formed in a massive-star-
forming region, e.g., Orion, where most stars form

» Glant planet formation leads naturally to shock fronts at 2.5 AU
that are capable of forming the chondrules

» Strong UV fluxes form complex organic mantles on ice grains
and icy planetesimals through photochemistry

» Headstart for prebiotic chemistry — formation of amino acids at
an early phase of evolution

» Consistent with general belief that planetary systems similar to
our own need not be rare — and neither need be life?



