Observing Protoplanetary Disks at Long Wavelengths

Kobe International School of Planetary Sciences "Origins of Planetary Systems" 13 July 2005

> Steven Beckwith Space Telescope Science Institute

Outline

- The signatures of disks in spectral energy distributions
- Inferring the physical properties of disks from the radiation signatures
 - Unique & degenerate parameters
 - Addition of spatial information
- Disk particles
 - Spectral signatures
 - Size and composition: dust "chemistry"
- Disk dynamical properties
 - Orbital & infall signatures
- Future observations
 - Spatial information (interferometry)
 - High resolution spectra (disk chemistry)

Spectral energy distributions

Adams, Lada, & Shu 1988, Ap. J., 326, 865.

Why does a disk dominate the infrared emission?

Spectral Energy Distributions (SEDs)

Thin, black disk: "standard theory"

Lynden-Bell & Pringle 1974, *MNRAS*, **168**, 603. Adams, Lada, & Shu 1988, *Ap. J.*, **326**, 865.

Also true for accretion energy.

Thin disk SED: observations

Adams, Lada, & Shu 1988, *Ap. J.*, **326**, 865. Beckwith *et al.* 1990, *AJ*, **99**, 924

 V_{F_v} V_{v} $V_$

Thin disk $vF_v \sim v^{4/3}$

The SED from a theoretically thin black disk almost never fits the observations of young stars with excess infrared emission!

• most SEDs flatter than $v^{4/3}$

- some SEDs very flat, $\nu F_{\nu} \sim \nu^0$

Power law $vF_v \Rightarrow$ power law T(r)

Lynden-Bell & Pringle 1974, *MNRAS*, **168**, 603. Adams, Lada, & Shu 1988, *Ap. J.*, **326**, 865.

$$vF_{v} = \int_{\pi}^{r_{max}} \pi vB_{v}[T(r)] 2\pi r dr$$

$$vF_{v} = C T_{0}^{2/q} v^{\alpha} \int_{x_{max}}^{x_{max}} \frac{x}{\exp(x^{q}) - 1} dx$$

$$\alpha = 4 - 2/q$$

$$\Rightarrow vF_{v} \sim v^{\alpha} \sim v^{4 - 2/q}$$

$$q = 1/2 \text{ for a flat SED}$$
• we can derive q from α
• T(r) uniquely follows from α

8

How are disks really heated?

- "Standard" flat, black disks with *accretion*:
 - Lynden-Bell & Pringle 1974, MNRAS, 168, 603.
 - Adams, Lada, & Shu 1987, Ap.J., **312**, 788; & 1988, Ap.J., **326**, 865.
- Flaring:
 - Kenyon & Hartmann 1987, *Ap.J.*, **323**, 714.
 - Calvet et al. 1994, Ap.J., 434, 330. (w/ rad. trans. & envelope)
 - Chiang & Goldreich 1997, Ap.J., 490, 368. (w/ rad. trans., disk only)
- Scattering halo:
 - Natta 1993, Ap.J., 412, 761.
- Wave-driven accretion heating:
 - Shu et al. 1990, Ap.J., 358, 495.

Geometrical changes: Flaring

Kenyon & Hartmann 1987, *Ap. J.*, **323**, 714.

BUT

 \rightarrow cannot account for *flat* SEDs (6/15 < 1/2) \rightarrow still assumes "black" disk (no radiative transfer)

Radiative transfer

Chiang & Goldreich 1997, Ap. J., 490, 368.

* small grains "bare" => T_{grain} > $T_{blackbody}$ * disk emission τ_{IR} < 1 (5 - 100 μ m) $\frac{h}{r} \approx 0.9 \left(\frac{r}{209 \, AU}\right)^{\frac{73}{45}}$

11

Still cannot account for *very flat* SEDs but does fit majority.

$$T_i(r) \approx 21 \text{ K} \left(\frac{r}{209 \text{ AU}}\right)^{\frac{19}{45}}$$

Prediction: disk surface emission is optically *thin*

Radiative heating: isolated particle

Particle radius *a* (spherical; rapidly spinning) Temperature *T*

Absorbed radiative power: $\pi a^2 \frac{L}{4\pi r^2}$

Emitted radiative power: $4\pi a^2 \sigma T^4$

$$T = \left(\frac{L}{16\pi\sigma}\right)^{1/4} r^{-1/2}$$

Using ε_v for small particles: $T \sim r^{-2/5}$

cf L. Spitzer, Jr., Physical Processes in the Interstellar Medium, ch. 9.1

Disk Exercises

- Calculate the "typical" disk radii (distance from the star) sampled by different wavelengths:
 - $\Box \lambda(\mu m) = 1, 2, 4, 10, 100$

- L_{*} = 0.2, 1, 5 L_{sun}

- Vary assumptions about temperature ($T \sim r^{-1/2}$, $T \sim r^{-2/5}$, etc.)
- What areas of a disk do different search techniques sample?
- Set up a model calculation of an SED using the tools of the last few slides and show how the SED varies with different model parameters (r_{min}, r_{max}, q)
 - Use MathCad, Mathematica, C, or a similar program to make numerical calculations easy
 - Vary disk inclination to the line-of-sight

Physical Modification: Holes

Inner holes produce flux deficits

Fomalhaut: Ring Emission

Vega-type stars: Fomalhaut

Dent et al. 2000, MNRAS, 314, 702

Optically thin, $dT/dr > 0 \implies Emission$ features

Silicate emission confirms τ <1 atmospheres

Fits: 1.2 µm pyroxene grains, CG97 model

Top of atmosphere

Emission features indicate optically thin emission from in an atmosphere with vertically *increasing* temperature gradients

Natta, Meyer, & Beckwith 2000, *ApJ*, **534**, 838

10 µm emission: Mineralogy

Natta, Meyer, & Beckwith 2000, ApJ, 534, 828.

Silicate emission confirms τ <1 atmospheres

Emission features indicate optically thin emission from in an 15 atmosphere with vertically *increasing* temperature gradients

> Natta, Meyer, & Beckwith 2000, *ApJ*, **534**, 838

Near- IR Disk Lifetimes

Haisch, Lada, Lada 2001, *ApJL*, **553**, L153.

- L-band (3.4 µm) light used as disk proxy
 - 900 K
 - $\geq 10^{20}$ gm of dust
 - Inner disk (TBD)
- Disk lifetime ~6 Myr
- Principal uncertainty driven by NGC 2362
- Are outer and inner disk lifetimes the same?

How do we observe disk mass?

Beckwith *et al.* 1990, *AJ*, **99**, 924 Beckwith 1999, "OSPS", p. 579.

We want to observe where the disk is transparent (to see *all* the material)

For long enough wavelengths (λ > 200 μ m), the dust τ < 1.

 $\begin{array}{l} \mathsf{A}_{d} \equiv \text{disk projected area} \\ \mathsf{D} \equiv \text{distance to source} \\ \mathsf{T}_{d} \equiv \text{disk particle temperature} \\ \mathsf{\tau}_{v} \equiv \text{optical depth at } v \\ \mathsf{M}_{d} \equiv \text{mass of disk} \\ \mathsf{\kappa}_{v} \equiv \text{mass opacity (cm^{2} g^{-1})} \end{array}$

27

$$M_{d} = 0.03 M_{sun} \frac{F_{v}}{1 Jy} \left(\frac{D}{100 \text{ pc}}\right)^{2} \left(\frac{\lambda}{1.3 \text{ mm}}\right)^{3} \frac{50 \text{ K}}{\text{T}} \frac{0.02 \text{ cm}^{2} \text{ gm}^{-1}}{\kappa_{1.3 \text{ mm}}}$$

mm-wave continuum is easily seen

Mundt *et al.* 1990, *A&A*, **232**, 37.

HL Tau

Koerner & Sargent 1995, *Ap.SS.*, **223**, 169 and unpublished data.

T(r) & $\Sigma(r)$ govern where F_v originates

$$F_{v} \sim D^{-2} \int_{r_{in}}^{r_{out}} B_{v}[T(r)] (1-e^{-\tau(r)}) 2\pi r dr$$

$$T_{v}(r) = \int_{r_{in}}^{r_{out}} K T(r) v^{2} \kappa_{v} \Sigma(r) 2\pi r dr$$

 $T(\mathbf{r}) \sim \mathbf{r}^{-\mathbf{q}} \quad 3/4 < \mathbf{q} < 1/2$ $\Sigma(\mathbf{r}) \sim \mathbf{r}^{-\mathbf{p}} \quad 0 < \mathbf{p} < 2$ $\kappa_{\nu} \sim \nu^{\beta} \quad \beta \sim 2$ $F_{\nu} \sim \nu^{2+\beta} \kappa_{0} \int_{\Gamma_{in}}^{\Gamma_{out}} d\mathbf{r} \sim \kappa_{0} \nu^{2+\beta} \mathbf{r}^{2-\mathbf{q}-\mathbf{p}}$

p = 3/2, q = 3/4 $F_v(1 \text{ mm}) \sim r_{in}^{-1/4}$ p = 1, q = 1/2 $F_v(1 \text{ mm}) \sim r_{out}^{-1/2}$

Inner Parts May Have $\tau >> 1$

The radius at which the disk appears optically thick is a function of κ_{v} , hence wavelength. The changing ratio of optically thick/optically thin regions with wavelength offsets the changes from κ_v itself, thus causing a degeneracy of parameters (makes it difficult to derive β uniquely.)

$$F_{v} \sim \int_{r_{in}}^{r_{out}} B_{v}[T(r)] (1-e^{-\tau(r)}) 2\pi r dr$$

$$F_{v} \sim \int_{r_{in}}^{r_{1}} k T(r) v^{2} 2\pi r dr$$
 ($\tau > 1$)

+
$$\int_{r_1}^{r_{out}} k T(\mathbf{r}) v^2 \kappa_v \Sigma(\mathbf{r}) 2\pi \mathbf{r} d\mathbf{r}$$
 ($\tau < 1$)

$$F_{v} \sim T(r_{1}) v^{2} \pi r_{1}^{2} + \kappa_{v} \Sigma(r_{out}) T(r_{out}) v^{2} \pi r_{out}^{2}$$

Optical depth effects

Andrews & Williams 2005, astro-ph 0506187 (June 2005)

Degeneracy of Parameters: mm-waves

- Compare mm-wave spectral indices, β, for opaque (τ >> 1) and transparent (τ «1) disks at λ ~ 1 mm
 What are the limiting cases?
- Estimate the relative contributions of optically thick and optically thin parts of a disk to mm-wave light
 - Assume a surface density law: $\Sigma(\mathbf{r}) \sim \mathbf{r}^{-p}$
 - Find the radius, $r_{\tau=1}(\lambda)$, where $\tau(\lambda) = 1$
 - What happens to relative contributions of thick/thin emission as wavelength varies?
 - Show how this degeneracy makes it impossible to derive the dust spectral index, β , uniquely from an SED
 - How can one use spatial resolution to overcome this problem?

Disks can build planets

similar mass distribution for NGC 2071 by E. Lada 1998 but *not* Orion HST disks (E. Lada *et al.*, Bally *et al.*, unpublished) ³³

Mass Evolution of Young Disks BSCG 1990, AJ., 99, 924. 0.1 $\frac{\rm M_{\rm D}}{\rm M_{\odot}}$ "Minimum" 0.01 Solar nebula Ţ ₹ ● 0.001 Solar System planets 0.1 10 1 Age (Myr)

34

Disk Mass

Andrews & Williams 2005, astro-ph 0506187

Fig. 9.— Plots showing the relationships between disk masses or submillimeter continuum slopes and stellar masses or ages. Filled circles are detections and open triangles are $3-\sigma$ upper limits.

Distribution of Disk Radii: Orion

Vicente & Alves 2005, astro-ph 0506585 (2005)

MM-waves interact with all atoms

Absorption in Insulators

Vibrational modes ~ 1 - 30 μm

$$\kappa_v \sim \sigma(v) / m_p \sim v^2$$

y wavelengths

Particle Emissivity in Disks

Beckwith & Sargent 1991, *Ap. J.*, **381**, 250. Mannings & Emerson 1994, *MNRAS*, **267**, 361

Spectral Index: β

 $(F_n / v^2) \times C$

- $F_{v} \sim \kappa_{v} (M_{dust}/A) B_{v}(T)$ $\kappa_{v} = \kappa_{0} (v/v_{0})^{\beta}$
- Opacity index β
 - Interstellar dust: $\beta = 2$
 - Planetesimals: $\beta = 0$
 - Observed: $-0.5 < \beta < 2$

Adams *et al.* 1990 Beckwith & Sargent 1991 Mannings & Emerson 1994

Latest work by: Lay et al. 1994 (0.85 mm CSO-JCMT) Willner et al. ASI poster (7 mm VLA)

Radio Wavelength Emissivity

Natta et al. 2004, *AA*, **416**, 179

41

TW Hydra: 3.5cm dust emission

Wilner et al. 2005, ApJL, 626, L109

- Very long wavelengths sensitive to centimeter-size grains
- Must rule out synchrotron & free-free (plasma) emission
- Large grains out to tens of AU
- Assumed disk mass ~0.1M_{sun}

Spatially Resolved Spectra: TW Hydra

Roberge *et al.* 2005, *ApJ*, **622**, 1121

SPECTROSCOPY AND IMAGING OF TW HYA

The scattered light from the disk is essentially gray from ~50 AU to ~150 AU.

This result argues for relatively large (>1 µm) scattering particles

Numerical Models: TW Hydra

No. 2, 2002

FIG. 3.—Model disk adopted for TW Hya. The outer disk, where grains have grown to ~1 cm, has a edge at $R \sim 3-4$ AU and surrounds the inner optically thin disk, which has a vertical optical depth at 10 μ m $\tau_{10} \sim 0.05$. Gas still exists in the inner disk accreting onto the star through a magnetosphere. A minute amount of ~1 μ m dust permeates this gas. The dotted line is the surface of the outer disk if it extended inward; the resulting SED for this model is shown in Fig. 4.

Calvet *et al.* 2002, *ApJ*, **568**, 1008

FIG. 4.—*Top*: Fit to the TW Hya SED with our composite disk model. *Bottom*: Detail of the infrared region. The emission from each region is indicated: outer disk (*dot-dashed line*), edge of outer disk (*dashed line*), inner disk (*dotted line*), star (*light solid line*), and total (*heavy solid line*). The stellar spectrum is taken from the Allard & Hauschildt (1995) M-dwarf library, where a model with appropriate effective temperature and gravity (log g = 4) could be found. The model has been scaled to the observations at $K(2.2 \,\mu\text{m})$. The excess near ~4.5 μm could be CO fundamental emission; the amount of excess (if any) at $\lambda < 5 \,\mu\text{m}$ is very uncertain, since it depends critically on the effective temperature (and model) for the stellar photosphere.

Grain size does alter opacity

Miyake & Nakagawa 1993, *I carus*, **106**, 20.

Interstellar opacities are uncertain

Henning, Michel, & Stognienko 1995, Plan. & Sp. Sci.

Particles grow quickly

Weidenschilling, S. J. 1988, *Meteorites & Early Solar Sys.* Chokshi *et al.* 1993, *Ap. J.*, **407**, 806, Blum *et al.* 1999, *EM&P*, **80**, 285 (lab experiments)

Disk dynamics: what is the velocity field?

Keplerian velocity field is clear signature.

Velocity gradients & gravity

Gas Dynamics in HL Tau: mostly infall

4.4 – 5.8 km s⁻¹ 6.2 – 7.6 km s⁻¹ 8.0 – 9.4 km s⁻¹

GG Tau system: a rotating disk

Dutrey et al. 1994, A&A, 286, 149

¹³CO *J*=1-0

Model calculation

Observed velocity map

To see real* disks, need high resolution

Future Observations

- Use high spatial resolution to break degeneracies
 - ALMA: resolution of mm-wave emission to tens of AU
 - VLT/Keck/LBTI: resolution of thermal IR emission to ~1 AU
- Use spectral resolution to analyze disk atmospheres and grain/gas composition
 - Spitzer spectra of disks
 - SOFIA spectra in far infrared
 - ALMA for molecular abundances in disk interiors on few x 10 AU scales

van den Ancker 2000, astro-ph 0005060

54

H₂ in the GG Tau Disk

Thi et al. 1999, Ap.J.Lett., 521, L63

Disk boundaries appear to be sharp

O'Dell & Wen 1992, Ap.J., 387, 229.

McCaughrean et al. 1998, ApJL, 492, L157.

Interpretation: the particles have grown to pebbles or rocks.

Throop et al., Science, April, 2001

Keck interferometer observations at 2 µm

Eisner et al. 2005, ApJ, 623, 952

For AS 207A, V2508 Oph, and PX Vul, simple flat accretion disk models suggest much smaller sizes (when fitted to SEDs) than those determined interferometrically. Models incorporating puffed-up inner walls and flared outer disks provide better fits to our V^2 and SED data than the simple flat disk models. This is consistent with previous studies of more massive Herbig Ae stars (Eisner et al. 2004; Leinert et al. 2004) and suggests that truncated disks with puffed-up inner walls describe lower mass T Tauri stars in addition to more massive objects.

Summary Lessons

- Our understanding of disk atmospheres is compatible with observed SEDs
- We can measure sizes, temperature distributions, masses, and some features (holes, gaps) with reasonable certainty
- Parameter degeneracies that affect interpretations may be resolved with high angular resolution
 - ALMA for mm-wave disk "interiors"
 - IR-interferometry for inner disks, holes, and surfaces
- Spectra and SEDs show good evidence for:
 - Grain growth leading to small rocks
 - Constituents similar to proto-Solar nebula
 - Gas entrained with dust
 - Disks bound to stars