PDF files are openly distributed for the educational purpose only. Reuse and/or modifications of figures and tables in the PDF files are not allowed.

Martian evolution based on noble gas and other trace elements

Sho Sasaki (University of Tokyo)

Martian evolution based on noble gas and other trace elements

Sho Sasaki (University of Tokyo)

450000000 yr

Events on the Early Mars

- Formation by successive accretion of planetesimals
- Heating by the blanketing effect of the atmosphere
- Formation of "magma ocean"
- Metal-silicate segregation and formation of metallic core
- Giant impact(s) ?
- Cooling of magma ocean

A central star and a surrounding gas-dust disk

Dust formation and sedimentation

Formation of planetesimals

Gravitational instability of the dust-rich layer

10-100km in size 10¹⁰⁻¹¹

Collisions of planetesimals => protoplanets => planets

Dissipation of the gas disk

SS t=0

Planetesimal accretion

A Growing Planet

Impact degassing => atmosphere

Trap of accretional energy

- $\Sigma 1/2 \text{ mv}^2 \sim 3/5 \text{ GM}^2/\text{R}$
- If the gravitational energy is captured completely, Mars mean T ~ 25000K.
- But heat is easily lost by radiation.
- Blanketing effect of atmosphere should suppress heat escape.
 - => Enhance surface T
- T > T_m around M ~ M_{Mars}

Blanketing effect of the atmosphere Formation of "magma ocean"

Metal-silicate differentiation in the magma ocean => core formation

Metal-silicate differentiation in the magma ocean => core formation

Metal-silicate differentiation in the magma ocean => core formation

To represent the (0Ω)

Giant Impacts?

Re-melting, mixing, degassing, etc....

Origin and evolution of the Martian atmosphere

- Primary atmosphere from the protoplanetary gas disk
- Degassed atmosphere from impacts
- Impact erosion of the atmosphere
- Degassing through solidification of magma ocean
- Thick atmosphere of CO_2 (a few bar)
- Later evolution of the atmosphere:
 - Volcanic supply / cometary supply
 - trapped into the interior / escape to the space

Key compositional data

- Martian atmosphere data by Viking landers (1976)
- Meteorites from Mars

Meteorites from Mars

- Young age mostly $< 1.3 \times 10^9$ yr
- Close to terrestrial basalts and volcanic rocks – Volcanisms of a large body?
- Different isotopic compositions from terrestrial rocks and other meteorites

- e.g. Oxygen isotopes

 Composition of trapped gas – similar to atmospheric composition taken by Viking lander

ALH84001 Life?

Nakhla

Chassigny

Shergotty

SNC meteorites

Zagami

Table 1. Martian meteorites.

_

_

Name (associated meteorites)	Year	Crystallization	Ejection
	found	age (Ma)	age (Ma)
Shergottites (basalts)			
Dar al Gani 476 (489, 670, 735, 876)	2000	474(11)	1.24(12)
Dhofar 019	2000	575(5)	19.8(2.3)
Elephant Moraine 79001	1979	173(3)	0.73(15)
Los Angeles	1999	170(8)	3.10(20)
Northwest Africa 480	2000	<500	2.4(2)
Queen Alexandra Range 94201	1994	327(10)	2.71(20)
Sayh al Uhaymir 008 (008, 051, 094)	1999		1.5(3)
Shergotty	1865*	165(4)	2.73(20)
Zagami	1962*	177(3)	2.92(15)
Shergottites (lherzolites)			
Allan Hills 77005	1977	179(5)	3.06(20)
Lewis Cliffs 88516	1988	178(8)	3.94(40)
Yamato 793605	1979	212(62)	4.70(50)
Nakhlites (clinopyroxenites)			
Governador Valadares	1958	1330(10)	10.0(2.1)
Lafayette	1931	1320(20)	11.9(2.2)
Nakhla	1911*	1270(10)	10.75(40)
Northwest Africa 817	2000	1350(?)	9.7(1.1)
Other			
Chassigny (dunite)	1815*	1340(50)	11.3(6)
Allan Hills 84001 (orthopyroxenite)	1984	4510(110)	15.0(8)

Martian meteorite age

Meteorite gas vs Viking atmosphere measurements

Noble gas: He, Ne, Ar, Kr, Xe and their isotopes

- Evidence of physical / chemical processes
 dissolution, partition, and degassing
- Rich in the solar gas but trapped amounts in solids are small
- Radiogenic noble gas isotopes and chronology
- Martian noble gas data: Viking measurements and Martian meteorites

Noble gas atomic structures

Mass spectrometer

Noble gas stable isotopes Species Mass number of isotopes • He 3, 4 • Ne 20, 21, 22 • Ar 36, 38, 40 80, 82, 83, 84, 86 • Kr 124, 126, 128, 129, 130, • Xe 131, 132, 134, 136 All are unstable Rn

Noble gas

- No chemical reaction
- Changed mostly by physical processes
- Especially isotopic ratios are changed by radiogenic processes or by physical processes such as mass fractionation.
- Favor in melt and gas phases

→ Degassing → atmosphere (→ escape)

Noble gas in the atmosphere

- No chemical reaction with the surface
- Little adsorption onto the surface

- NG in the atmosphere
- = Remnant of early atmosphere
 - + Accumulated degassed component
 - (- escaped component)

NG → story of atmosphere evolution

Noble gas

- Significant fractionation from the gas in the protoplanetary gas disk (which was enriched in noble gas species).
- Solar elemental composition

- Planetary elemental composition
- Venus >> Earth >> Mars

Noble gas abundance

"Planetary" noble gas

- Trapped from the nebular gas
 - Elemental fractionated pattern ≠ solar
 - Q phase in meteorites
- Difference among Mars, Earth, Venus?
 - Earth and Mars
 - Difference of atmospheric loss during / just after accretion
 - Venus: primary atmosphere of nebular gas?

Xe isotopic pattern

Enriched in ¹²⁹Xe

Overall fracitonation Enriched in heavier isotopes

Mass fractionation through early hydrodynamic escape

=> Decrease in "planetary" noble gas

Xe isotopic pattern

Enriched in ¹²⁹Xe

Overall fracitonation Enriched in heavier isotopes

Mass fractionation through early hydrodynamic escape

=> Decrease in "planetary" noble gas

Radiogenic noble gas and Martian degassing history

- Difference between the Earth and Mars
- Constraints on Martian platetectonics efficient degassing process
- Contribution from long-term volcanism

 $^{40}K => ^{40}Ar$ half life 1.25x10⁹yr $^{129}I => ^{129}Xe$ half life 1.57x10⁷yr

	⁴⁰ Ar/ ³⁶ Ar	¹²⁹ Xe/ ¹³⁰ Xe	¹²⁹ Xe/ ¹³² Xe
Earth	295.5	6.50	0.983
Venus	1.19±0.07	-	-
Mars Viking	3.01×10 ³	-	1.5-4.5
EETA79001	2.26×10 ³	16.40±0.8	2.39±0.03

Radiogenic species

 40 K => 40 Ar half life 1.25x10⁹yr

 $^{129}I = ^{129}Xe$ half life $1.57x10^{7}yr$

Mostly radiogenic ⁴⁰Ar

Same initial ratio is assumed between the Earth and Mars

R(X): Relative X abundance in the atmosphere [kg / planetary mass]

Radiogenic gas = Initially 0 in the atmosphere

Degassing from the interior should supply radiogenic gas into the atmosphere.

2 - Stage Degassing Model --- α , β , degassing fractions

If $\tau_{1/2}(^{129}\text{Xe}) \le t_1 \le \tau_{1/2}(^{40}\text{Ar})$ and $t_2 \sim \tau_{1/2}(^{40}\text{Ar})$

$$\begin{aligned} ^{129} \text{Xe}^* &= \alpha^{129} \text{I}_0 \left(1 - \exp(-\lambda_{129} t_1) \right) \\ &+ \beta \Big[(1 - \alpha)^{129} \text{I}_0 \left(1 - \exp(-\lambda_{129} t_1) \right) + ^{129} \text{I}_0 \left(\exp(-\lambda_{129} t_1) - \exp(-\lambda_{129} t_2) \right) \Big] \\ &\approx \alpha^{129} \text{I}_0 \left(1 - \exp(-\lambda_{129} t_1) \right) \end{aligned}$$

$$\frac{R\left({}^{129}\text{Xe}^*\right)_{\text{Mars}}}{R\left({}^{129}\text{Xe}^*\right)_{\text{Earth}}} \approx \frac{\alpha_{\text{Mars}}\left(1 - \exp(-\lambda_{129}t_{\text{M1}})\right)}{\alpha_{\text{Earth}}\left(1 - \exp(-\lambda_{129}t_{\text{E1}})\right)} = 0.353$$

$$\frac{R\left({}^{40}\text{Ar}^*\right)_{\text{Earth}}}{R\left({}^{40}\text{Ar}^*\right)_{\text{Earth}}} \approx \frac{\beta_{\text{Mars}}\left(\exp(-\lambda_{40}t_{\text{M1}}) - \exp(-\lambda_{40}t_{\text{M2}})\right)}{\beta_{\text{Earth}}\left(\exp(-\lambda_{40}t_{\text{E1}}) - \exp(-\lambda_{40}t_{\text{E2}})\right)}$$

$$\approx \frac{\beta_{\text{Mars}}\left(1 - \exp(-\lambda_{40}t_{\text{M2}})\right)}{\beta_{\text{Earth}}\left(1 - \exp(-\lambda_{40}t_{\text{M2}})\right)} = 0.048.$$

If timings of degassing events are similar between the Earth and Mars,

$$\frac{\alpha_{\text{Mars}}}{\alpha_{\text{Earth}}} \approx 0.353 \text{ and } \frac{\beta_{\text{Mars}}}{\beta_{\text{Earth}}} \approx 0.048.$$

Later degassing 10⁸-10⁹yr Mars << Earth

Early degassing 10⁷-10⁸yr Mars ~ Earth Magma ocean cooling ?

Later degassing 10⁸-10⁹yr Mars << Earth Volcanic activities

More quantitative analysis.

- Volcanic degassing
- Vocanisms in overall histories Hot spots?
 Estimated from the surface volcanics
 Vocanic volume + crater age

• Early (Hadean) platetectonics

NW, HT different crater age models

Martian platetectonics

First advocated to explain the flatness of northern lowland (Sleep, 1994)

Volcanoes around the northern plane = subduction volcanism?

No geomorphological and other evidence.

Magnetic field

Stripes of remnant magnetic fields = Evidence of ancient platetectonics ?

Sea floor spreading model under frequent magnetic reversals.

No geomorpholoriccally correlated evidence on the surface

Melt production – degassing model by platetectonics

- Case 1 Apply the Earth's melt production rate $q = 2x10^{10} \text{ m}^3/\text{yr}$, melt fraction 0.2
- Case 2 Apply the Earth's melt production rate q = 2x10¹⁰ m³/yr, melt fraction = melt fraction of hot-spot type
- Case 3 Use a detailed melt generation model from Martian mantle temperature

Case 3

Increase melt generation ~ degassing with higher mantle temperature

Degassing rate at ridges

- $F = K [{}^{40}Ar]_{man} = q [{}^{40}Ar]_{man} / \xi V_{man}$
- Case 1 A (20km³/yr) [⁴⁰Ar]_{man} / 0.2 V_{man}
- Case 2 A (20km³/yr) [⁴⁰Ar]_{man} / ξ V_{man}
- Case 3 (0.64km²/yr) d(T_p) [⁴⁰Ar]_{man} / ξ (T_p) V_{man}
- $A = (0.3 / 0.6) (R_M/R_E)^2 = 0.13$
- T_p: mantle potential temperature
- d(T_p) : melt thickness
Under appropriate melt fraction, platetectonics duration is short

- ⁴⁰Ar in Mars atmosphere Hot spot (volcanic)
- + Platetectonics
- Platetectonics

Short duration Limited contribution in ⁴⁰Ar

But maybe significant contribution to the atmospheric mass $(CO_2)^{40}$ Ar in degassed gas would be large in early stage)

Duration of Plate Tectonics (Ga)

Detection of ⁴He

 Residence time of helium in the Martian atmosphere is considered to be order of 10⁶yr.

 232 Th => 208 Pb 6 4 HeHalf life 1.40x10 10 yr 238 U => 206 Pb 8 4 HeHalf life 4.47x10 9 yr

Detection of ⁴He => Evidence of continuous volcanic activity

Recent volcanic activity on Mars

< 10⁸ yr

Magma eruption and water outflow

Radiogenic noble gas isotopes

Useful to decipher the degassing from the Martian interior

Martian degassing activity from radiogenic noble gas data

- Early degassing: Mars ~ Earth
 Cooling of magma ocean
- Later degassing: Mars << Earth
 - Weaker volcanic activity
 - Compatible with surface morphology
 - Mars should have cooled more rapidly
- Platetectonics short duration if existed

Martian evolution based on noble gas and other trace elements

Metal-silicate differentiation in the magma ocean => core formation

The timing is OK?

Core formation

• ${}^{182}Hf => {}^{182}W$ Half life $9x10^{6}yr$

- Metal-silicate fractionation
 - Hf 100% to silicate
 - W mainly to metal

If core formation $>> 10^7$ yr $\epsilon_W \sim 0$

Some Martian meteorites have $\varepsilon_W > 0$

Core formation age around 10⁷yr

Fig. 7. Evolution of ε_{W} for different parts of the martian mantle, using Eqn. 3 in the text. The low curve is calculated for the martian mantle after core formation, with Hf/W = 4, and starting at 15 Ma after T_0 . The highest curve was calculated for a majorite-bearing (40%) deep mantle, with a Hf/W ratio of 50. The intermediate curves were calculated for a shallow garnet-bearing mantle (Hf/W = 17) and garnet-free mantle (Hf/W = 7). Details of Eqn. 3 and values used in the equation are given in the text. The shallow and deep mineralogy of the martian mantle is taken from the Bertka and Fei (1997) mineralogic model for the interior of Mars. Data for SNC meteorites on right are from Lee and Halliday (1997).