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1 Introduction

1.1 Background
e Batchelor(1969)

— Assumed that the energy &£ is the unique invariants.

— Proposed the self-similar energy spectrum and the enstrophy decay
law

E(k) = E3%F(KEV?), Q~t2 (1)

for high Re limit.
— However, numerical experiments contradict this prediction.

e Carnevale et al. (1991)

— Proposed the vortex scaling theory
E~t and Q~t%2 numerically €=0.7—0.75 (2)

— Supported by many DNSs using hyperviscosity.
e Bartello & Warn (1996)

— The existence of coherent vortices = the existence of the second
invariant, wy,, (the vorticity of the most intense vortex) = spoil
the Batchelor’s assumption.

— The one-point vorticity PDF is self-similar in the core, not in the
wings corresponding to the coherent vortices.

x This corresponds to a phase transition of the vorticity moments:

cqt ™ 4 — c);
(Jw|?) ~ {;(12 —7qc)_1w%_qct_%, E(] izjf Ge) (3)
(qe =~ 0.4) (4)

* For finite Re case, (finite Re vortex scaling theory)

e Chasnov (1997)

— Numerically found some self-similar solutions of the form
E(k)=EIF(kl), 1=+&/Q (6)
— For Re = 15.73,
E~t ' and Q~t2, (the critical Re decay law)  (7)
— For high Re,
E~t" and Q~t1 (the high Re decay law) (8)

— DNSs using the normal viscosity (Bartello & Warn 1996, Das et al.
2001) also obtained same results with (8).

e Eqn. (8) is at variance with the prediction of vortex scaling theory
(2).

e Connection between selt-similarity and vortex scaling theory has been
left as an unsolved problem.

1.2 Purpose of this work

1. Propose a similarity theory for the decaying 2-D NS turbulence, in-
cluding the viscous range. =—

2. Discuss the failure of Batchelor’s similarity hypothesis within our
framework. —

3. Discuss connection between self-similarity and vortex scaling theory:.

2 Theory

e Propose self-similarity of the energy spectrum and energy transfer
function, through the entire range (including the viscous range)

— The self-similar form of E(k)
E(k) = cA\%t°G (z), z=kA. (9)

From (9) follows

E~t 9 gt 0l g { 2_ ) _s (10)
p

x o and 0; constants.
xc; a constant with the dimension of (length)?~7/(time)?*2.
— related to wpy
x (&; a positive definite function of universal form.
x \; a length scale (any length scale).
x p; degree of hyperviscosity
— The above decay law include the critical Re decay law and the high

Re decay law. (Generalization of Chasnov & Herring (1998))

e Our self-similarity theory based on the inviscid equations predicts an
upscale energy flux for all wave numbers, in violation of Fjgrtoft’s
theorem.

3 Numerical results

e Our theory predicts O ~ +=1/P in the high Re.

e Test our similarity theory.

3.1 Simulation conditions

e The initial energy spectrum

I 2
E(k) o k" exp (e ,  kp = 40. (11)
2 \ kp

e [insemble average over 8 realizations.

run pl run p2 run p3 run p4

P 1 2 3 4

N? 10242 5127 5122 5122

ke 341 170 170 170

vp 19.12949 x 107° 3.5 x 1077 2.42214 x 10719 8.38111 x 10718
£(0) 0.5 0.5 0.5 0.5
Q(0) 915.37 915.37 915.37 915.37
RY) 256 3648 28790 454470

Table 1: Simulation parameters. p is the degree of hyperviscosity, N2
the grid points n the simulation, k7 the truncation wavenumber, v the
viscosity coefficient, £(0) the initial energy, Q(0) the initial enstrophy,

and R;p ) the Reynolds number defined by Rgp ) _ \/%Fp_l.

Vp

3.2 Results

103 Figure 1: Time evolution of en-
: \ | strophy. The thick solid line, run
pl: the thin solid line, for run
p2; the thin dash-dot line, run
p3; the thick dash-dot line, run

g % p4. The dotted line indicates the
slope of -0.4.
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run pl | (1.03 + 0.01) x 10~1 1.10 = 0.02

(
run p2 | (6.94 + 0.21) x 1073 (5.13 £ 0.30) x 107!
run p3 | (3.27 & 0.36) x 1073 | (4.39 £ 0.44) x 101

(2.37 £ 0.38) x 1073 (4.31 + 0.50) x 101

run p4

Table 2: Decay exponents of energy and enstrophy. The values are esti-
mated by the averages of t€ /e and tQ/n over the ranges 1.5 < t < 10
for run pl and 10 <t < 20 for the others.
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Figure 2: (a) Energy spectra at t = 1.5, 2.9, 4.8 and 7.3 for run pl.

These times correspond to 7 = fg {2Q(t’)}1/2 dt’ = 41, 60, 80 and
100. The dotted line indicates the initial energy spectrum. (b) Same as
(a) but written in terms of similarity variables. A value of 8 = 0.1 is
used in drawing this figure.
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Figure 3: (a) Energy spectra at ¢ = 10, 13.6 and 20 for run p2. These
times correspond to 7 = 157, 186 and 242. The dotted line indicates
the initial energy spectrum. (b) Same as (a) but written in terms of
similarity variables. A value of 8 = 0.0069 is used in drawing this figure.

4 Connection between self-similarity
and vortex scaling theory

e The numerical simulations show that our similarity theory applies for
p=1& 2, but not for p > 2.

e To understand the failure of our self-similarity theory.

e Equating (3) with ¢ = 2 with (10),

0+ 7 —q 1
P50, = 0+->q (12)
D

X:
2 —(qc

e As Re increase, § — 0. — % > g. ~ 04 = Self-similar
evolution of K(k) and the finite Re vortex scaling theory can coexist

only for p =1 or p = 2, not for p > 2.
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Figure 4: (a) One-point vorticity PDF for run pl at ¢t = 1.5, 2.9, 4.8, 7.3.
(b) Same as (a) but written in terms of similarity variables. The PDF
oradually narrows, while the scaled PDF broadens with time.

L cate the slopes for each realiza-
LR | tion for run pl and the triangles

f X%ﬁw\%\ " for the average over their eight re-

TR B alizations. The asterisks indicate
% N NN . : ) the slopes for each realization for
- S ; | run p2 and the open circles for
3 b S . the average over their eight real-

: N f izations. The dotted line corre-

r i sponds to prediction from Batch-
I | I elor’s similarity hypothesis, and

’ ’ ) . ° - the thick and thin dash-dot lines

correspond to those from the fi-
nite Reynolds number modifica-
tion of vortex scaling theory for
run pl and run p2, respectively.

Figure 5: Slopes of the vorticity
moments over the ranges 1.5 <

t <10 for run pl and 10 < ¢t <
20 for run p2. The crosses indi-

5 Summary

e We propose self-similarity of the energy spectrum and energy transter
function, through the entire range (including the viscous range)

e Our self-similarity theory predicts Q ~ =1/ in the high Re limit.

e The self-similarity involves a dimensional prefactor, suggesting a hid-

den variable, which is the vortex strength as suggested by Bartello &
Warn (1996).

e Numerical simulations show that our theory holds for p = 1 and p = 2,
but not for p > 2.

e We can reconcile self-similarity with vortex scaling theory for p = 1
and p = 2, but not for p > 2.

e The implication is that viscosity is never ignorable in decaying 2-D
NS turbulence, even in the high Re limit — 7.e. the inviscid limit is
singular.

e Furthermore high Re for usual viscosity cannot be mimicked with hy-
pPEerviscosity.

References

1] BARTELLO, P. AND WARN, T. 1996 Self-similarity of decaying
two-dimensional turbulence. J. Fluid Mech. 326, 357-372.

2] BATCHELOR, G. K. 1969 Computation of the energy spectrum in

homogeneous two-dimensional turbulence. Phys. Fluids Suppl. 12,
[1-233-11-239.

3] BRacco, A., McWIiLLIAMS, J. C., MURANTE, G., PROVEN-
zALE, A. & WEIss, J. B. 2000 Revisiting freely decaying two-

dimensional turbulence at millennial resolution. Phys. Fluids 12,
2931-2941.

4] CARNEVALE, G. F., McWiLriams, J. C., PomMEAU, Y.,
WEIss, J. B. AND YOUNG, W. R. 1991 Evolution of vortex
statistics in two-dimensional turbulence. Phys. Rev. Lett. 66, 2735
2737.

5] CHASNOV, J. R. 1997 On the decay of two-dimensional homoge-
neous turbulence. Phys. Fluids 9, 171-180.

6] CHASNOV, J. R. AND HERRING, J. R. 1998 Self-similar de-

cay of two-dimensional turbulence. In Advances in Turbulence VII,
Kluwer, 415-418.

7] Das, C., Kipa, S. AND GOTO, S. 2001 Overall self-similar decay
of two-dimensional turbulence. J. Phys. Soc. Japan. 70, 966-976.

8] FigrTOFT, R. 1953 On the changes in the spectral distribution
of kinetic energy for two-dimensional non-divergent flow. Tellus 5,

225-230.

9] IWAYAMA, T. AND SHEPHERD, T. G. 2004 Anomalous self-

similarity and vortex scaling theory for decaying two-dimensional
turbulence. J. Fluid Mech. submitted.



