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1 Introduction

1.1 Background

• Batchelor(1969)

– Assumed that the energy E is the unique invariants.

– Proposed the self-similar energy spectrum and the enstrophy decay
law,

E(k) = E3/2tF (kE1/2), Q ∼ t−2, (1)

for high Re limit.

– However, numerical experiments contradict this prediction.

• Carnevale et al. (1991)

– Proposed the vortex scaling theory

E ∼ t0 and Q ∼ t−ξ/2, numerically ξ = 0.7 − 0.75 (2)

– Supported by many DNSs using hyperviscosity.

• Bartello & Warn (1996)

– The existence of coherent vortices =⇒ the existence of the second
invariant, ωm, (the vorticity of the most intense vortex) =⇒ spoil
the Batchelor’s assumption.

– The one-point vorticity PDF is self-similar in the core, not in the
wings corresponding to the coherent vortices.

∗ This corresponds to a phase transition of the vorticity moments:

〈|ω|q〉 ∼
{

cqt
−q, (−1 < q < qc),

c(q − qc)
−1ω

q−qc
m t−qc, (q > qc),

(3)

(qc ≈ 0.4) (4)

∗ For finite Re case, (finite Re vortex scaling theory)

ωm ∼ t−χ. (5)

• Chasnov (1997)

– Numerically found some self-similar solutions of the form

E(k) = E lF (kl), l ≡
√

E/Q (6)

– For Re = 15.73,

E ∼ t−1 and Q ∼ t−2, (the critical Re decay law) (7)

– For high Re,

E ∼ t0 and Q ∼ t−1, (the high Re decay law) (8)

– DNSs using the normal viscosity (Bartello & Warn 1996, Das et al.

2001) also obtained same results with (8).

• Eqn. (8) is at variance with the prediction of vortex scaling theory
(2).

• Connection between self-similarity and vortex scaling theory has been
left as an unsolved problem.

1.2 Purpose of this work

1. Propose a similarity theory for the decaying 2-D NS turbulence, in-
cluding the viscous range. =⇒ Proceedings

2. Discuss the failure of Batchelor’s similarity hypothesis within our
framework. =⇒ Proceedings

3. Discuss connection between self-similarity and vortex scaling theory.

2 Theory

• Propose self-similarity of the energy spectrum and energy transfer
function, through the entire range (including the viscous range)

– The self-similar form of E(k)

E(k) = cΛσtδG (x), x ≡ k Λ. (9)

From (9) follows

E ∼ t−θ, Q ∼ t−θ−1/p, θ =
(1 − σ)

2p
− δ. (10)

∗ σ and δ; constants.

∗ c; a constant with the dimension of (length)3−σ/(time)δ+2.
=⇒ related to ωm

∗G; a positive definite function of universal form.

∗ Λ; a length scale (any length scale).

∗ p; degree of hyperviscosity

– The above decay law include the critical Re decay law and the high
Re decay law. (Generalization of Chasnov & Herring (1998))

• Our self-similarity theory based on the inviscid equations predicts an
upscale energy flux for all wave numbers, in violation of Fjørtoft’s
theorem.

3 Numerical results

• Our theory predicts Q ∼ t−1/p in the high Re.

• Test our similarity theory.

3.1 Simulation conditions

• The initial energy spectrum

E(k) ∝ k7 exp

[

−7

2

(

k

kp

)2
]

, kp = 40. (11)

• Ensemble average over 8 realizations.

run p1 run p2 run p3 run p4

p 1 2 3 4

N2 10242 5122 5122 5122

kT 341 170 170 170

νp 9.12949 × 10−5 3.5 × 10−9 2.42214 × 10−13 8.38111 × 10−18

E(0) 0.5 0.5 0.5 0.5
Q(0) 915.37 915.37 915.37 915.37

R
(p)
l 256 3648 28790 454470

Table 1: Simulation parameters. p is the degree of hyperviscosity, N 2

the grid points in the simulation, kT the truncation wavenumber, νp the
viscosity coefficient, E(0) the initial energy, Q(0) the initial enstrophy,

and R
(p)
l the Reynolds number defined by R

(p)
l =

√
2E l2p−1

νp
.

3.2 Results

Figure 1: Time evolution of en-
strophy. The thick solid line, run
p1; the thin solid line, for run
p2; the thin dash-dot line, run
p3; the thick dash-dot line, run
p4. The dotted line indicates the
slope of -0.4.

energy enstrophy

run p1 (1.03 ± 0.01) × 10−1 1.10 ± 0.02

run p2 (6.94 ± 0.21) × 10−3 (5.13 ± 0.30) × 10−1

run p3 (3.27 ± 0.36) × 10−3 (4.39 ± 0.44) × 10−1

run p4 (2.37 ± 0.38) × 10−3 (4.31 ± 0.50) × 10−1

Table 2: Decay exponents of energy and enstrophy. The values are esti-
mated by the averages of tE/ε and tQ/η over the ranges 1.5 ≤ t ≤ 10
for run p1 and 10 ≤ t ≤ 20 for the others.

Figure 2: (a) Energy spectra at t = 1.5, 2.9, 4.8 and 7.3 for run p1.

These times correspond to τ ≡
∫ t
0

{

2Q(t′)
}1/2

dt′ = 41, 60, 80 and
100. The dotted line indicates the initial energy spectrum. (b) Same as
(a) but written in terms of similarity variables. A value of θ = 0.1 is
used in drawing this figure.

Figure 3: (a) Energy spectra at t = 10, 13.6 and 20 for run p2. These
times correspond to τ = 157, 186 and 242. The dotted line indicates
the initial energy spectrum. (b) Same as (a) but written in terms of
similarity variables. A value of θ = 0.0069 is used in drawing this figure.

4 Connection between self-similarity

and vortex scaling theory

• The numerical simulations show that our similarity theory applies for
p = 1 & 2, but not for p > 2.

• To understand the failure of our self-similarity theory.

• Equating (3) with q = 2 with (10),

χ =
θ + 1

p − qc

2 − qc
> 0, =⇒ θ +

1

p
> qc (12)

• As Re increase, θ → 0. =⇒ 1
p > qc ≈ 0.4 =⇒ Self-similar

evolution of E(k) and the finite Re vortex scaling theory can coexist
only for p = 1 or p = 2, not for p > 2.

Figure 4: (a) One-point vorticity PDF for run p1 at t = 1.5, 2.9, 4.8, 7.3.
(b) Same as (a) but written in terms of similarity variables. The PDF
gradually narrows, while the scaled PDF broadens with time.

Figure 5: Slopes of the vorticity
moments over the ranges 1.5 ≤
t ≤ 10 for run p1 and 10 ≤ t ≤
20 for run p2. The crosses indi-

cate the slopes for each realiza-
tion for run p1 and the triangles
for the average over their eight re-
alizations.The asterisks indicate
the slopes for each realization for
run p2 and the open circles for
the average over their eight real-
izations. The dotted line corre-
sponds to prediction from Batch-
elor’s similarity hypothesis, and
the thick and thin dash-dot lines
correspond to those from the fi-
nite Reynolds number modifica-
tion of vortex scaling theory for
run p1 and run p2, respectively.

5 Summary

• We propose self-similarity of the energy spectrum and energy transfer
function, through the entire range (including the viscous range)

• Our self-similarity theory predicts Q ∼ t−1/p in the high Re limit.

• The self-similarity involves a dimensional prefactor, suggesting a hid-
den variable, which is the vortex strength as suggested by Bartello &
Warn (1996).

• Numerical simulations show that our theory holds for p = 1 and p = 2,
but not for p > 2.

• We can reconcile self-similarity with vortex scaling theory for p = 1
and p = 2, but not for p > 2.

• The implication is that viscosity is never ignorable in decaying 2-D
NS turbulence, even in the high Re limit – i.e. the inviscid limit is
singular.

• Furthermore high Re for usual viscosity cannot be mimicked with hy-
perviscosity.
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