Experimental Study of Impact Cratering Formed on Simulated Icy Crust Including Soil: Image Analyses of Ejecta Velocity

K.Hiraoka ${ }^{1)}$, K.Yoshikawa ${ }^{1)}$, M.Arakawa ${ }^{2)}$, A.M.Nakamura ${ }^{1)}$

(1: Graduate School of Science and Technology,Kobe Univ.Japan, 2:Institute of Low Temperature Science,Hokkaido Univ.Japan)
Abstract We performed impact experiments onto $\mathrm{H}_{2} \mathrm{O}$ ice-rock powder mixture target, with changing projectile velocity and rock content rate. We found that the tensile strength of the target derived from the size and velocity of spalls based on the model of Melosh (1983) does not vary with rock concentrate for targets with lower rock content. We derived the relation between crater volume and kinetic energy, and late-stage effective energy proposed by Mizutani et al.(1990).

1. Introduction

object
small \leftarrow crater diameter \rightarrow large
Moon and Mercury bowl shaped crater $\leftarrow \rightarrow$ central peak crater Icy satellites bowl shaped crater $\leftarrow \quad \rightarrow$ central pit crater

Mars
bowl shaped crater \leftarrow central peak crater
central pit crater
Origin and formation mechanism of central pit crater ..
unknown(contribution of volatiles?)

Purpose of this study
1)experimental study for the contribution of volatile to impact cratering. 2)estimation of target strength from ejecta velocity and size based on the model of Melosh (1983) and derivation of a scaling law of crater volume including the strength.
2. Model

Melosh(1983) derived the following equation:

$$
\mathrm{z} \approx\left(\frac{\sigma}{\rho \mathrm{c}_{\mathrm{L}}}\right) \frac{\mathrm{d}}{\mathrm{v}_{\mathrm{e}}} \quad \begin{array}{l|l|}
\mathrm{z} \text { : spall thickness } \\
\sigma \text { :tensile strength of target } \\
c_{L} \text { : sound velocity } \\
v_{e} \text { : ejection velocity of spall } \\
d \text { : depth of equivalent center } \\
\rho \text { of shock wave propagation } \\
\rho \text { :target density }
\end{array}
$$

This equation is applicable for the spalls except for those from very near the impact site having high ejection velocities

3. Experiments

Experiments were performed at Institute of Low Temperature Science, Hokkaido University(263~253K).

	Oct. 24 and 25, 2002	Sep. 4 and 6, 2003
Projectile	$\begin{gathered} \mathrm{H}_{2} \mathrm{O} \text { ice } \\ \text { (Diameter }=15 \mathrm{~mm}, \text { Height }=10 \mathrm{~mm}, \\ \text { Mass } \fallingdotseq 1.6 \mathrm{~g}) \end{gathered}$	$$
Impact velocity	$350,450,550,650 \mathrm{~m} / \mathrm{s}$ using gas gun	$1480 \sim 3670 \mathrm{~m} / \mathrm{s}$ using two stage light gas gun
Target*	shape: cylinder, Diameter $=20$ or 27 or 30 cm , Height $=5$ or 6 cm Rock content $=12.5,25,37.5 \mathrm{wt} \%$	shape: truncated cone Diameter $=1.0$ and 2.0 mm , Height $=2.5 \mathrm{~mm}$ Rock content $=0,12.5,25,37.5,50 \mathrm{wt} \%$
Framing rate	2000 frame/sec	4000 frame/sec

*In order to make uniform targets, the targets were made by adding water into rock powder and natural snow mixture in the room at the temperature of 250 K
image analysis
From the high-speed video images, we selected the fragments which can be measured their thickness.
Then we derived the ejection velocities from their moving distances.

Fig. 1
Taking a picture from every 10 frames. Projectile was impacted on a target of $37.5 \mathrm{wt} \%$ rock content in vertical direction. The impact velocity was $569 \mathrm{~m} / \mathrm{s}$.

4. Results

Crater volume V determined from total mass of ejecta

Target tensile strength σ estimated from Eq.(1)

There is no big difference in the
 tensile strength of $12.5 w t \%$ target and $25 \mathrm{wt} \%$ target, and this tendency is also found in crater volume shown in Fig. 2.

Tensile strength appears to increase with rock content for targets of rock content more than $37.5 \mathrm{wt} \%$.

Fig. 3

Tensile strength estimated from Melosh's model. X axis is z / d, Y axis is $\rho c_{L} v_{e}$. (see Eq.(1))

5. Discussion

Fig. 4
late-stage effective energy/ tensile strength versus
Crater volume V/projectile volume V

6. Summary

O In our experiments, we found

$$
\mathrm{V} \propto \mathrm{E}_{\mathrm{k}}^{0.849}
$$

Target strength σ calculated from Melosh`s model has no big difference between between targets of rock content $12.5 \mathrm{wt} \%$ and $25 \mathrm{wt} \%$.
The relation between $E_{l s}$ and V is

$$
\frac{\mathrm{V}_{\mathrm{p}}}{\mathrm{~V}} \propto\left(\frac{\mathrm{E}_{\mathrm{LS}}}{\sigma}\right)^{0.883}
$$

The process of image analyses should be semi-automated.

