Shock Effects in Meteorites I: Basic Shock Physics

Thomas Sharp School or Earth and Space Exploration Arizona State University and Paul DeCarli Stanford Research Institute

Acknowledgments

- Paul De Carli
- Zhidong "Sonny" Xie
- Carrie Aramovich
- Ahmed El Goresy
- Chen Ming
- Briggita Wopenka
- Center for Meteorite Studies at ASU
- NASA Cosmochemistry

Outline

- Introduction
- The Rankine Hugoniot Equations
- Shock loading, release and waste heat
- The effect of porosity
- Phase transitions
- Shock reflections and loading path
- Shock collisions
- Shock heterogeneity and local P-T excursions.
- Some conclusions
- Working with and synthesizing Hugoniots
- 3-D Hydrocode calculations

Shocked Chondrites

- Most chondrites are shocked
 - Shock-induced deformation and transformation
 - Shock-induced melting causes black shock veins
- Impact shock is an important part of parent body processing.
 - It may be an important heat source for metamorphism (Rubin, 2004).

Impact history of the Solar System

- Collisions between meteorite parent bodies cause shock.
 - Transient high pressure and temperature state
- Shock features record the impact history
 - How big were impacts?
 - Shock pressure is related to relative velocities.
 - Shock duration is related to impactor size.

The Big Questions

- How big were the collisions that caused the shock effects that we see in meteorites?
 - Shock pressure provides constraints on minimum relative velocity of the impact.
 - Shock pulse-duration provides constraints on minimum size of the impacting body.
- When did these impacts occur?
- The answers come from the samples.

"If you knew anything about shock, you'd know you were wrong."

Knowledge of shock physics is needed to understand shock effects

–Most shock physics texts are hard for geologists and mineralogists.

Purpose: Present basic concepts of shock physics so that we can interpret shock effects in meteorites and constrain shock pressure and temperature conditions.

Background

- Interest in shock since the invention of the cannon.
 - Military engineers need to understand shock in designing weapons and armor.
 - Nuclear weapons are shock devices.
- Physicists have been interested in understanding materials under extreme conditions.
 - Determine Equations of State at very high P
- Geologists and planetary scientists became interested in shock metamorphism in the 1960s.
 - Stishovite and coesite found at Meteor Crater

Complex problems

- Shock effects in heterogeneous materials are very complex at the μm to sub-μm to scale
 - P-T conditions at the shock shock front are heterogeneous
 - Heterogenious metamorphism in shocked Coconino Sandstone (Kieffer, 1971, 1976)
 - Heterogeneous shock effects in meteorites: "local P-T excursions"
- 3-D calculations at meso-scales are possible (Baer and Trott, 2002, 2004)
- Simplify the problem by assuming that the material is homogeneous.
 - Average over larger scales and longer times.

What is Shock?

- A compression wave with a velocity greater than the sound velocity for the material
 - Example: The bow shock of a supersonic aircraft
 - Sonic boom is the shock wave
 - Instantaneous increase in pressure, density, energy and velocity
 - Material behind the shock wave is accelerated to a characteristic particle velocity.

Melosch 1989

Elastic waves have a constant velocity

Plastic deformation occurs once the Hugoniot Elastic Limit (HEL) is exceeded.

Wave velocity decreases and then increases to shock.

Shock Pulse

- Since wave speed increases with pressure, shock waves are abrupt.
- The shock pulse is the time between passage of the shock wave and the rarefaction (release) wave.
 - The release wave travels in compressed material and is faster than the shock wave.
 - The release spreads out with distance.

Pressure-Time History

- Planar-shock wave approximation
- Sample behaves like the surrounding target.
 - Instantaneous pressure jump to the Peak shock pressure
 - Adiabatic pressure release

Pressure vs. Distance

The Rankine Hugoniot Equations

 From conservation of mass

1) $\rho(Us-Up) = \rho_0 Us$

- momentum 2) $P-P_0 = \rho_0 UsUp$
- energy 3) $PUp = \rho Us(E-E_0) + (1/2)\rho_0 Up^2 Us$

The Rankine Hugoniot Equations

3)
$$Up^2 = (P-P_0)(V_0-V)$$

4) $Us^2 = V_0(P-P_0)/(V_0-V)$

5) $E-E_0 = 1/2(P+P_0)(V_0-V)$

- V = specific volume = $1/\rho$

- Need one more relationship: a shock equation of state
- Examples
 - P-V
 - P-Us
 - P-Up
 - Us-Up

The Hugoniot: Shock Wave Equations of State

- P-V plane
 - The Hugoniot is a locus of shock states , but not a thermodynamic path
 - For a single shock front, the loading path is the Rayleigh Line.
 - Useful for calculating energy changes and temperatures.

Us-Up Hugoniot

- Most published shock data is in Us-Up
 - Us is measured directly and Up from the free surface velocity Up ~ Ufs/2
- Linear relationship for simple shock compression

$$- Us = C_0 + sUp$$

- Real shock data have many segments
 - In Us-Up, Hugoniot consists of linear segments
 - 0 Compression up to the Hugoniot Elastic Limit (HEL)
 - 1 dynamic yielding to quasi-hydrostatic state
 - 2 low pressure state Hugoniot
 - 3 mixed phase region
 - 4 high-pressure phase

Applications

- Tabulated rock and mineral Hugoniot data allow one to generate mineral and rock Hugoniots
 - (Ahrens and Johnson, 1995a, 1995b, AGU reference books)
 - Allows one to calculate energetics of shock as well as post-shock and shock temperatures
 - A simple spread-sheet method of Hugoniot calculation will be discussed later.

Energy and Waste Heat

- Loading path = Rayleigh Line
- Energy added (ΔE) = area of the A-B-C triangle.
 = (1/2)P(V₀-V)
- Recovered mechanical energy on release = area under release adiabat
- Non-recovered energy is termed waste .

Effect of Porosity

- A porous sample has a larger initial volume.
- The Hugoniot includes a shallow slope region where the porosity is
 P crushed out.
- Above this pressure, the Hugoniot is the same as for the nonporous mineral.
- How does the E-E₀ and waste heat change with porosity?

Implications

- Porous rocks are heated much more than non porous rocks.
 - Heat provides the energy to drive kinetic processes.
 - Ex. Diamond synthesis from disordered graphite
- Collapsed pores and fractures produce thermal heterogeneities.
 - A major cause of local shock melting.
- Collisions of porous material during planetary accretion would make shock heating important in the early solar system.

Melt veins and pockets in Acfer 040

Phase transitions

- Shock data provide evidence for phase transitions.
 - Different Hugoniot segments
- Tectosilicates
 - Clear evidence of transformation in Hugoniot data and shockrecovery experiments.
- Olivine and pyroxene
 - No evidence that they transform during shock experiments
- How do transitions occur under such short time scales?
 - Nucleation and growth?
 - High temperatures are needed.

Transitions in Albite

- Above ~ 30 GPa Hugoniot is like that of CN_{Si}=6 structures (like stishovite of hollandite)
- Release adiabat follows that of high-ρ CN_{Si} = 6 phases to about 7GPa
- Below 7 GPa, rapid expansion of release adiabat
- Recovered sample is diaplectic glass
 - Glass formed by structural collapse, without melting
- For shock to < 30 GPa, release adiabat is approximately the Hugoniot for the low-P phase
 - No change to CN=6 structures.

Implications

- Shock-induced phase transformations occur readily in open structures such as tectosilicates
 - Plagioclase is transformed to maskelynite throughout highly shocked meteorites.
 - Less dependence on temperature.
- Dense structures don't transform in shock experiments
 - No evidence of olivine transformation in shock experiments (Jeanloz, 1980)
 - Olivine and pyroxene only transform in "hot" melted regions of shocked meteorites (Chen et al. 1996, and many others)
 - Poorly ordered graphite only transforms to diamond if the starting material is porous and shock temperatures exceed 3000 K.
 DeCarli and Jamison (1961)

Shock reflections and loading

- Variations in shock impedance (ρUs) result in different pressures in different materials.
 - Most shock-recovery experiments use a reverberation method to reach higher pressures.
 - Simulate this with an infinite layer of albite in Fe
- Assume initial shock pressure in Fe is 50 GPa.
 - Shock pressure in albite will be less.
 - Albite pressure will "ring up" by reverberation.

		Shock Direction
Iron		
	Albite	
Iron		

Loading Path and Energy

Energy Consequences

- Total energy increase in albite
 - For reflected shock to 50 GPa
 - Total energy added ~ 1040 J/g
 - Assuming 300K initial T, post-shock T = 1220 K
 - For a single shock to 50 GPa
 - Total energy added ~ 2060 J/g
 - Post-shock T = 1770 K
- Shock reverberation experiments do not model nature very well.
 - Shock and post shock temperatures are low.
 - Many shock effects are are thermally activated kinetic processes where temperature is a very important variable.

Pressure Equilibration

- The initial shock front creates a range of pressures, particle velocities and temperatures
 - Causes deformation and sheer heating
 - Pressure must equilibrate by shock reverberation
 - Equilibration time scale = several reverberations
 - ~ (grain size)/Us Us= 7.1 km/s

For a 1-mm grain size

Equilibration in less than a μ s.

Implications

- Pressure equilibration occurs very fast.
- Temperature equilibration, by conduction, is slow.
- If the pressure pulse is long (large impacting body), temperature heterogeneities will predominate

Pressure terminology

- Peak Shock Pressure
 - equilibrated shock pressure after the passage of the initial shock wave front has passed.
- Pressure spike
 - Transient pressure variations before equilibration
- Ringing down
 - Decrease from high pressure by reverberation
- Ringing up
 - Increase from low pressure by reverberation

Shock Collisions

- High pressure and temperature can be generated by shock collisions.
 - Albite layer in olivine, parallel to shock direction

Some Conclusions

- Complexities of shock can be simplified by using simplifying assumptions and continuum approach.
 - Hugoniot data and calculations are easy.
- P-V Hogoniot provides ∆E and waste heat values that can be used to calculate shock and post-shock temperatures.
 - More compressible materials get hotter
 - Porous samples get much hotter than non porous samples.

- P-Up Hugoniots allow one to calculate loading path for shock experiments
 - Can calculate thermal effects of reverberation
 - Can adjust sample container materials.
- These simple calculations allow us to better understand shock heterogeneities.

Hugoniot Calculations

- Simple spreadsheet calculations can provide Hugoniot data for many minerals and rocks.
 - Example Stillwater Bronzite
 - EoS data from Ahrens and Johnson (1995)
 - Set up spreadsheet with the following columns
 - Fill column A with Particle Velocity values from 0 to 5 km/s in 0.01 increments

Α	В	С	D	E	F	G
Stillwater	• Bronziþ e	= 3.277	Specific	Internal Energy	Recoverable	Waste He
Part. Vel.	Shock Ve	Pressure	Volume	Increase	Energy	
Up, km/s	Us, Km/s	Gpa	cc/g	E-EO, kJ/g	kJ/g	kJ/g

Column B: Shock Velocity

• $Us = C_0 + sUp$

 $- Us = C_0 + s^*Ax$

- From Ahrens and Johnson (1995a)
 - Us = 5.99 + 1.56*Up (Up up to 0.483)
 - Us = 6.47 + 0.6*Up (for 0.483 km/s <Up< 2.131 km/s)
 - Us = 5.16 + 0.6*Up (for 2.043 km/s <Up< 3.481 km/s)</p>
- Start by inputting all equations in columns B, C and D and find crossover values of Up.
- Complete column B with appropriate formulas for the Up values

Column C: Pressure

• $P - P_0 = \rho_0 UsUp$ - Assume $P_0 = 0$ Column C: = $\rho_0^*Ax^*Bx$

Column D: Specific Volume

- Specific Volume V = $1/\rho$
- $Up^2 = (P P_0)(V V_0)$

– Assume $P_0 = 0$ and solve for V

- $V = V_0 Up^2/P$
- V = $1/\rho_0$ Up²/P
- Column D = $1/\rho_0$ Ax^2/Cx

Column E: Internal Energy Increase

- Area under the Raleigh Line
- $E-E_0 = (1/2)(P-P_0)(V_0-V)$
- Column E: = $0.5^{*}Cx^{*}(1/\rho_{0}-Dx)$

Column F: Recoverable Energy

- Area under the release adiabat
 - (Approximated by the Hugoniot)
- $E-E0 = (1/2)(P+P_0)(V_0-V)$
 - We can use a Simpson's rule integration, which is a cumulative sum of $E-E_0$
- Column F:

 $= 0.5^{*}(Cx + Cx-1)^{*}(Dx-1 - Dx) + Fx-1$

Column G: Waste Heat

- Waste Heat = Difference between Internal Energy Increase and Recoverable Energy
- Column G: = Ex Fx

Post Shock Temperature

- What would be the post-shock temperature of bronzite shocked to 50 GPa?
 - From Column G: waste heat = 223 J/g.
 - Assume a specific heat of 1 J.gK and an initial temperature of 300 K
 - Post shock T ~ 300 + 223 = 523 K

Shock Temperature?

- Need to calculate adiabatic heating from 0 GPa to 50 GPa
- $T_s = T_0 e^{(\gamma(Vo-V))}$
- Grueneisen Parameter $\gamma = 0.5$ top 2 for most rocks and minerals.
 - Assuming a value of $\gamma = 1$, T_s = 565 K
 - Assuming a value of $\gamma = 2$, T_s = 615 K
 - Adiabatic cooling is only ~ 42 92 $^\circ$
- Adiabatic decompression does not produce large cooling!

Rock Hugoniots

- Can be constructed from appropriate mineral Hugoniot data.
 - Hugoniot data (Ahens and Johnson, 1995) is fairly complete, but mineral compositions are limited.
 - Hugoniot data are are very similar for a given structure
 - Forsterite and fayolite are very similar
- One can also use isothermal P-V data from static high-pressure experiments to approximate Hugoniots.

Convert P-V data to Us-Up

Synthetic Hugoniots

- For a polymineralic rock, sum the volumes of the constituent minerals at pressure.
 - Start with volume fraction at P = 0 GPa
 - For selected high pressure values, sum the volumes for P-V Hugoniot
 - From the P-V data, one can calculate Up and Us for the aggregate, using equations 3 and 4:

3)
$$Up^2 = (P-P_0)(V_0-V)$$

4) $Us^2 = V_0(P-P_0)/(V_0-V)$

RC106 Hugoniot Data

Mineral Shock Data (1995, Ahrens and Johnson, Mineral Physics and Crystallography, AGU handbook)								
Mineral	Formula	Density (_) Mg/m ³	C _o (km/s)	C _o error	S	S error	Lower Up	Upper Up
Forsterite	Mg ₂ SiO ₄	3.212	6.8	0.3	1.4	0.6	0	0.8
			7.21	0.1	0.55	0.06	0.75	2.45
-			4.6	0.3	1.51	0.08	2.43	4.61
Bronzitite	OPX	3.277	5.99		1.56		0	0.48
			6.47	0.06	0.6	0.04	0.48	2.13
			5.16	0.07	1.17	0.03	2.04	3.48
Anorthosite	An-Ab	2.774	5.73	0.07	0.07	0.08	0	1.99
			3.2	0.5	1.46	0.13	1.99	4.99
			4.45	0.15	1.23	0.01	4.99	28.7
Taenite	(Fe, Ni)	7.933	4.41	0.05	1.01	0.05	0	1.09
			3.79	0.05	1.65	0.02	1.02	2.78
			4.2	0.17	1.48	0.05	2.72	4.59
Pyrrhotite	Fe _{1-x} S	4.605	5.8	0.2	-4.7	0.5	0.24	0.55
			2.31	0.17	2.08	0.15	0.49	1.59
			3.23	0.1	1.49	0.03	1.49	5.36

Constituent Volumes (point counting results)				
Forsterite	~43%			
Bronzitite	~30%			
Anorthosite	~10%			
Taenite	~4.5%			
Pyrrhotite	~8.5%			
Pore space/cracks	~4%			

3-D Simulations

- Need 3-D numerical modeling to consider realistic geometries for impacts on parent bodies requires
 - Not 1-D planar wave
- Peak pressure at some depth will be in range 18-25 GPa
- Need hydrocode calculations of shock attenuation

Model Parameters

- Assume forsterite Hugoniots for parent bodies (justified by similarity with chondrite Hugoniot)
- Assume 800 m radius sphere (or equivalent) impacting larger body at velocities in range of 2-8 km/s. Note regions with pressures in 18-25 GPa range over durations ~0.1 s
- Scale as needed (8 km sphere for 1 s at 10 X depth)

Real Asteroids

Eros

Ida and Dactyl

Kleopatra

Calculational Nuts and Bolts

Autodyn[™] 2-D Axisymmetric Geometry, SPH Processor, 20 m Cell size, numerous gauge stations.

Stepped disc geometry unreal, but provides a check on the validity of the calculations via comparison of code calculation with analytic result.

2 km/s Impact

5.4 km/s Impacts

Summary

 Hydrocode calculations allow us to make more realistic interpretations of shock pressure and duration.

Realistic shapes

- Also allow for attenation
 - Explor range of velocities and depths of shock effects.