The formation of giant planets: Constraints from interior models

Tristan Guillot Observatoire de la Côte d'Azur <u>www.obs-nice.fr/guillot</u> (Guillot, Ann. Rev. Earth & Plan. Sci. 2005 & Saas-Fee course 2001, in press)

Jupiter: clouds & vortexes

QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image.

QuickTime[™] et un décompresseur GIF sont requis pour visionner cette image.

Saturn: the "dragon" storm

Uranus

QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image.

QuickTime™ et un décompresseur TIFF (non compressé) sont requis pour visionner cette image.

Both Hemispheres of Neptune ST Scl OPO · February 1995 · D. Crisp (JPL), WFPC2 Science Team, NASA

HST · WFPC2 2/3/95 zgl

Models now!

Giant planets: theoretical models

Basic data

	Jupiter	Saturn	Uranus	Neptune
$M \times 10^{-29} [g]$	18.986112(15) ^a	5.684640(30) ^b	0.8683205(34) ^c	1.0243542(31) ^d
$R_{\rm eq} \times 10^{-9} [\rm cm]$	7.1492(4) ^e	$6.0268(4)^{f}$	2.5559(4) ^g	2.4766(15) ^g
$R_{\rm pol} \times 10^{-9} [{\rm cm}]$	6.6854(10) ^e	5.4364(10) ^f	2.4973(20) ^g	2.4342(30) ^g
$\bar{R} \times 10^{-9}$ [cm]	6.9894(6) ^h	5.8210(6) ^h	2.5364(10) ⁱ	$2.4625(20)^{i}$
$\bar{ ho}$ [g cm ⁻³]	1.3275(4)	0.6880(2)	1.2704(15)	1.6377(40)
$J_2 \times 10^2$	1.4697(1) ^a	1.6332(10) ^b	0.35160(32) ^c	0.3539(10) ^d
$J_4 \times 10^4$	$-5.84(5)^{a}$	$-9.19(40)^{b}$	$-0.354(41)^{c}$	$-0.28(22)^{d}$
$J_6 \times 10^4$	$0.31(20)^{a}$	1.04(50) ^b		
$P_{\omega} \times 10^{-4} \text{ [s]}$	3.57297(41) ^j	3.83577(47) ^j	$6.206(4)^k$	5.800(20) ¹
q	0.08923(5)	0.15491(10)	0.02951(5)	0.02609(23)
$C/MR_{\rm eq}^2$	0.258	0.220	0.230	0.241

TABLE 1 Characteristics of the gravity fields and radii

Basic data

	Jupiter	Saturn	Uranus	Neptune
Absorbed power $[10^{23} \text{ erg} \cdot \text{s}^{-1}]$	50.14(248)	11.14(50)	0.526(37)	0.204(19)
Emitted power $[10^{23} \text{ erg} \cdot \text{s}^{-1}]$	83.65(84)	19.77(32)	0.560(11)	0.534(29)
Intrinsic power $[10^{23} \text{ erg} \cdot \text{s}^{-1}]$	33.5(26)	8.63(60)	0.034(38)	0.330(35)
Intrinsic flux [erg \cdot s ⁻¹ \cdot cm ⁻²]	5440.(430)	2010.(140)	42.(47)	433.(46)
Bond albedo	0.343(32)	0.342(30)	0.300(49)	0.290(67)
Effective temperature [K]	124.4(3)	95.0(4)	59.1(3)	59.3(8)
1-bar temperature ^b [K]	165.(5)	135.(5)	76.(2)	72.(2)

TABLE 2	Energy balance a	as determined from	m Voyager IRIS data ^a
---------	------------------	--------------------	----------------------------------

^aAfter Pearl & Conrath (1991). ^bLindal (1992).

The equations of (sub)stellar structure

 $\rho = \rho(P, T, \{X_i\});$ $S = S(P, T, \{X_i\})$

The equations of (sub)stellar structure

Boundary conditions

$$m = 0 \longrightarrow r = L = 0$$

$$m = M \longrightarrow P = P_{phot}(g, L)$$

$$T = T_{phot}(g, L)$$

Example: Eddington approximation

$$T = T_{\text{eff}}$$
$$P = \frac{2g}{3\kappa}$$

Atmospheric model:

A note on the thermal equation

We wrote: $\frac{\partial T}{\partial m} = \frac{T}{P} \frac{\partial P}{\partial m} \nabla_T \qquad \nabla_T \equiv \frac{d \ln T}{d \ln P}$

In a radiative environment:

$$F = -K \frac{dT}{dr} \qquad \frac{dT}{dr} = -\frac{1}{K} \frac{L}{4\pi r^2} \qquad \nabla_{\rm rad} = \frac{3}{64\pi\sigma G} \frac{\kappa PL}{mT^4},$$

Schwarzschild's criterion for convection:

 $\nabla_{rad} > \nabla_{ad}$

In a convective environment (MLT):

$$\nabla_T - \nabla_{\rm ad} \sim \left[\frac{4\sqrt{2}}{\alpha^2 \delta^{1/2}} \frac{F_{\rm conv}}{c_P T(\rho P)^{1/2}} \right]^{2/3},$$
$$v \sim \left[\frac{\alpha \delta}{4} \frac{P}{\rho c_P T} \frac{F_{\rm conv}}{\rho} \right]^{1/3}.$$

Opacities...

Let's work on these mass-radius relations

Mass-radius relation (~isolated objects)

Polytropic solutions

$$P = K\rho^{\gamma} \equiv K\rho^{1+1/n}$$

$$\begin{cases} \frac{dP}{dr} = -\frac{d\Phi}{dr}\rho\\ \frac{1}{r^2}\frac{d}{dr}\left(r^2\frac{d\Phi}{dr}\right) = 4\pi G\rho \end{cases}$$

$$z = Ar, \qquad A^2 = \frac{4\pi G}{(n+1)K} \rho_{c}^{\frac{n-1}{n}} \qquad \frac{1}{z^2} \frac{d}{dz} \left(z^2 \frac{dw}{dz} \right) + w^n = 0$$
$$w = \frac{\Phi}{\Phi_c} = \frac{\rho}{\rho_c}$$

Polytropic solutions

$$P = K\rho^{\gamma} \equiv K\rho^{1+1/n}$$

$$x = Ar, \qquad A^{2} = \frac{4\pi G}{(n+1)K}\rho_{c}^{\frac{n-1}{n}}$$

$$w = \frac{\Phi}{\Phi_{c}} = \frac{\rho}{\rho_{c}}$$

$$M = 4\pi\rho_{c}R^{3}$$

$$M = 4\pi\rho_{c}R^{3}$$

$$R = z_{n} \left[\frac{1}{4\pi G}\right]$$

$$\begin{aligned} f(r) &= \int_0^r 4\pi r^2 \rho dr \\ &= 4\pi \rho_{\rm c} \frac{r^3}{z^3} \int_0^z w^n z^2 dz \\ &= 4\pi \rho_{\rm c} r^3 \left(-\frac{1}{z} \frac{dw}{dz} \right)_{z=z_n} \end{aligned}$$

$$M = 4\pi\rho_{\rm c}R^3 \left(-\frac{1}{z}\frac{dw}{dz}\right)_{z=z_n},$$

$$R = z_n \left[\frac{1}{4\pi G} (n+1) K \right]^{1/2} \rho_{\rm c}^{\frac{1-n}{2n}}$$

$$R \propto K^{\frac{n}{3-n}} M^{\frac{1-n}{3-n}}$$

Polytropic index

Mass-radius relation (~isolated objects)

Mass-radius relation (irradiated objects)

The cooling of giant planets

The virial theorem:

$$\xi \equiv 3P/u\rho \qquad \xi E_{\mathbf{i}} + E_{\mathbf{g}} = 0,$$

$$\frac{W = E_{\mathbf{i}} + E_{\mathbf{g}}}{dt} + L = 0 \qquad \qquad L = (\xi - 1)\frac{dE_{\mathbf{i}}}{dt} = -\frac{\xi - 1}{\xi}\frac{dE_{\mathbf{g}}}{dt}.$$

monoatomic perfect gas => ξ =2

degenerate electron gas => ξ =2

For giant planets: $E_i \approx E_{el} + E_{ion} \approx E_{el}$ (θ is large)

The cooling of giant planets

For giant planets: $E_i \approx E_{el} + E_{ion}$ and $E_{el} \gg E_{ion}$ (θ is large)

d

$$E_{el} \propto \rho^{2/3}$$

$$E_{g} \propto 1/R \propto \rho^{1/3}$$

$$\dot{E}_{el} \approx 2(E_e/E_g)\dot{E}_g$$

$$\dot{E}_{el} \approx 2(E_e/E_g)\dot{E}_g$$

$$\dot{E}_{el} \approx 2(E_e/E_g)\dot{E}_g$$

$$\dot{E}_{el} \approx -\dot{E}_g \approx 2L$$

$$\dot{E}_e \approx -\dot{E}_g \approx 2L$$

$$L \approx -\dot{E}_{ion} \propto -\dot{T}$$
A modified Kelvin-Helmoltz contraction

$$L \approx \eta \frac{GM^2}{R\tau}$$

At the beginning of contraction (perfect gas) => $\eta \approx 1/2$: a significant fraction of the gravitational energy is radiated away; The remaining fraction heats up the interior

When degeneracy sets in => $\eta \approx \theta \approx 0.03$ The gravitational energy is almost entirely used up in the (non-thermal) increase of the electronic pressure. The luminosity is due to the *cooling* of the ions.

Mass-luminosity relation

Problem: how long before Jupiter solidifies?

Evolution tracks

Evolution tracks

Is neglecting the stellar irradiation ok?

Irradiated planets

QuickTime™ et un décompresseur GIF sont requis pour visionner cette image.

 Proximity to the star -> significant contribution due to the stellar irradiation

•The atmospheric temperature is close to the « equilibrium » temperature:

$$T_{eq} = f T_* \sqrt{\frac{R_*}{2a}}$$

•Teq=1400 to 2000K (HD209458b to OGLE planets)

T1bar=2000 to 3000K (rough estimate)

Importance of stellar irradiation

An HR diagram for giant planets

Application to real data!

Discovered transiting planets

Table 3: Systems with transiting	Pegasi planets discovered so far
----------------------------------	----------------------------------

	Age [Ga]	[Fe/H]	a $[AU]$		$M_{ m p}/M_{ m J}$	$R_{ m p}/10^{10}{ m cm}$
$\mathbf{HD209458}^{\mathrm{a}}$	4 - 7	0.00(2)	0.0462(20)	1460(120)	0.69(2)	1.02(9)
$\mathbf{OGLE} extsf{-56}^{\mathrm{b}}$	2 - 4	0.0(3)	0.0225(4)	1990(140)	1.45(23)	0.88(11)
$\mathbf{OGLE}\text{-}113^{c}$?	0.14(14)	0.0228(6)	1330(80)	0.765(25)	$0.77\binom{+5}{-4}$
$\mathbf{OGLE-132}^{\mathrm{d}}$	0 - 1.4	0.43(18)	0.0307(5)	2110(150)	1.19(13)	0.81(6)
$\mathbf{OGLE}\text{-}111^{\mathrm{e}}$?	0.12(28)	0.0470(10)	1040(160)	0.53(11)	$0.71\binom{+9}{-4}$
$TrES-1^{f}$?	0.00(4)	0.0393(11)	1180(140)	0.75(7)	0.77(4)

* Equilibrium temperature calculated on the basis of a zero planetary albedo ^aCody & Sasselov (2002), Brown et al. (2001)

^bTorres et al. (2004), Sasselov (2003), Konacki et al. (2003)

^cBouchy et al. (2004), Konacki et al. (2004)

^dMoutou et al. (2004)

^ePont et al. (2004)

 $^{\rm f} {\rm Laughlin}$ et al. (2004), Sozzetti et al. (2004), Alonso et al. (2004)

Mass-radius relation (irradiated objects)

Mass-radius relation (irradiated objects)

The significance of tides

- Based on HD209458b parameters:
- Gravitational energy required to change the radius by 10%
 - 2x10⁴² erg
- Energy available from the circularization of the orbit
 - 4x10⁴² erg (for e=0.1)
- Energy available from the synchronization of the planet's spin
 - 0.2x10⁴² erg
- => Tides may play a role but require either
 - A forced eccentricity (Bodenheimer et al.)
 - Continuous generation of K.E. in the interior (Showman & Guillot)

The contraction of HD209458b

Heavy elements & the evolution of giant planets

- Heavy elements in the core
 - \Rightarrow Smaller radii
 - $\Rightarrow \triangle R/R$ proportional to Mc/Mtot
- Heavy elements in the envelope
 - \Rightarrow Larger mean molecular weight
 - ⇒ Higher opacities (slower cooling)

Measured radii: Indicate that some planets *may* have cores ~20 Earth masses.

The problem of the "inflated" planets

- HD209458b and OGLE-10b have radii that are too large to be reproduced by standard evolution models
 - \Rightarrow A forced eccentricity (Bodenheimer et al. 2001, 2003)
 - ⇒ Kinetic energy generation and dissipation by tides (Showman & Guillot 2002)
 - ⇒ I naccurate stellar radii? (Burrows et al. 2003)
 - ⇒ Planets caught in a runaway evaporation phase? (Baraffe et al. 2003)

A possible explanation

- Conjecture:
 - All Pegasides are subject to the "inflation effect" but the core masses/mass of heavy elements are very variable from one planet to another
- Advantages:
 - Explains HD209458b and OGLE-110b at the same time as all other planets
 - "Small" planets like OGLE-111b, -113b and -132b also have parent stars with the highest [Fe/H]
 - Contrary to Jupiter, Pegasides can't eject planetesimals from their system: (GM/a)^{1/2} >> (2GM/R)^{1/2}; Disk properties directly impact planet composition
- Prediction:
 - Planets with low-irradiation and/or further from their star should be smaller <u>on average</u>.

Transit detection: a bias towards larger planets

- Transit surveys (e.g. OGLE) are strongly biased towards the detection of large planets (figure: Pont & Bouchy 2004)
- Suggests that we may have missed planets with radii <1 Rj.

Transiting planets: some conclusions (as of 02/05)

- A simple model with a H-He envelope and a dense core of mass (0 to 15 M⊕) reproduces the luminosity and radius of most known giant planets
 - Jupiter, Saturn
 - ~5 transiting extrasolar planets
- However, HD209458b is anomalously large!
 - A non-zero forced eccentricity? (Bodenheimer et al. 2001, 2003)
 - Atmospheric kinetic energy dissipated in the interior? (Guillot & Showman 2002)
 - A problematic determination of the stellar radius? (Burrows et al. 2003)
 - A chance effect due to runaway evaporation? (Baraffe et al. 2004)
- We should expect variations of the compositions
 - Variations in [Fe/H]
 - OGLE-TR-132: may be too small => core?
 - I mportant difference with Jupiter: Pegasi planets can't eject planetesimals (Guillot & Gladman 2000; Guillot 2005)
 - History matters (Burrows et al. 2000)
 - Evaporation may affect the closest planets (Lammer et al. 2003; Lecavelier des Etangs et al. 2004)

What about a very dense planet?

HD1492026b!

Table 3: Systems with transiting Pegasi planets discovered so far								
	Age [Ga]	[Fe/H]	a $[AU]$	- 72. K	$M_{\rm p}/M_{\rm J}$	$R_{\rm p}/10^{10}{\rm cm}$		
$\mathbf{HD209458}^{\mathrm{a}}$	4-7	0.00(2)	0.0462(20)	1460(120)	0.69(2)	1.02(9)		
$\mathbf{OGLE} extsf{-56}^{\mathrm{b}}$	2 - 4	0.0(3)	0.0225(4)	1990(140)	1.45(23)	0.88(11)		
$\mathbf{OGLE} extsf{-}113^{\mathrm{c}}$?	0.14(14)	0.0228(6)	1330(80)	0.765(25)	$0.77\binom{+5}{-4}$		
$\mathbf{OGLE} extsf{-}132^{\mathrm{d}}$	0-1.4	0.43(18)	0.0307(5)	2110(150)	1.19(13)	0.81(6)		
$\mathbf{OGLE} extsf{-}111^{\mathrm{e}}$?	0.12(28)	0.0470(10)	1040(160)	0.53(11)	$0.71\binom{+9}{-4}$		
$TrES-1^{f}$?	0.00(4)	0.0393(11)	1180(140)	0.75(7)	0.77(4)		
HD149026	2.0(8)	0.36(5)	0.042	1740	0.36(3)	0.52(4)		

HD1492026b on a M-R diagram

HD1492026b's evolution

Probing deeper our own gas giants

Interior models: principles

Constraints from rotation

Measured: external gravity potential

$$V_{ext} = \frac{GM}{r} \left[1 - \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^{2n} J_{2n} P_{2n}(\cos\theta) \right]$$

$$\frac{\nabla P}{\rho} = \nabla V - \Omega \times (\Omega \times \mathbf{r}) \qquad V = G \int \frac{\rho(\mathbf{r}')}{|\mathbf{r} - \mathbf{r}'|} d^3 \mathbf{r}$$

$$\frac{1}{|\mathbf{r} - \mathbf{r}'|} = \begin{cases} \frac{1}{r} \sum \left(\frac{r'}{r}\right)^n P_n(\cos\theta) & \text{if } r > r' \\ \frac{1}{r} \sum \left(\frac{r'}{r}\right)^{-n-1} P_n(\cos\theta) & \text{if } r < r \end{cases}$$

Constraints from rotation

Measured: external gravity potential

$$V_{ext} = \frac{GM}{r} \left[1 - \sum_{n=1}^{\infty} \left(\frac{a}{r}\right)^{2n} J_{2n} P_{2n}(\cos\theta) \right]$$

$$V_{\text{ext}} = \frac{G}{r} \sum r^{-2n} \int \rho r'^{2n} P_{2n}(\cos\theta) d^3r'$$

$$J_{2n} = -\frac{1}{Ma^{2n}} \int \rho r'^{2n} P_{2n}(\cos\theta) d^3r'$$

Constraints from gravity

Jupiter & Saturn: M_{core} vs. M_Z

- Jupiter:
 - large uncertainties
 - small core (possible =0)
 - H/He phase separation?
- Saturn
 - tighter constraints
 - helium abundance?
 - H/He phase separation?

Saumon & Guillot, ApJ (2004)

Erosion: a possible explanation for Jupiter's small core

Future prospects

- The structure of giant planets remains mysterious
 - Global composition? Core size?
 - Internal rotation, meteorology?
 - Magnetic fields?
 - Cooling?
- Their formation is very fuzzy
 - Scenario?
 - Timing?
 - Location?

A wealth of data awaits us...

- Continuing ground base measurements
- Spitzer, HST observations of transiting planets
- COROT (2006), Kepler (2008) => 10-100's of transiting planets
- Cassini + entended(?): Saturn's gravity field
- Juno: a Jupiter orbiter to measure the deep abundance of water, differential rotation, heavy elements composition, magnetic field
- Disk/planet formation connection