

"Earth mantle dynamics from planetary perspective" Water in terrestrial planets

Shun-ichiro Karato Yale University Department of Geology & Geophysics New Haven, CT, USA

Outline

- Some background
 - Why water?
 - Processes controlling the water content of a planet
- Water in the **Moon**
 - Volatile acquisition during the later stage of planetary formation (giant impact)
- Water in **Earth**
 - Water distribution in Earth
 - Global water circulation and the stability of ocean mass
 - Plate tectonics on terrestrial planets (super-Earths)

Why water?

life $\leftarrow \rightarrow$ water (?) ["habitable zone"]

Water → melting, rheological properties → dynamics and evolution of terrestrial planets

Inoue et al. (1994)

Processes controlling the water (volatiles) distribution in terrestrial planets

- Condensation of nebula
- Collisions, magma ocean: volatile loss?
- Magma ocean **solidification**, over-turn
- Solid-state convection, plate tectonics

The solar system has a lot of volatiles.

Lauretta (2011)

meteorites ~ terrestrial planets

Harold Urey (1893-1981)

Lauretta (2011)

(terrestrial) planets ~ meteorite ~ solar abundance (except for volatile elements)

Meteorites (~planets) ~ solar abundance – volatiles (condensation)

Condensation in the solar nebula

Materials in the Solar Nebula				
	Metals	Rocks	Hydrogen Compounds	Light Gases
Examples	iron, nickel, aluminum	silicates	water (H ₂ O) methane (CH ₄) ammonia (NH ₃)	hydrogen, helium
Typical Condensation Temperature	1,000– 1,600 K	500- 1,300 K	<150 K	(do not condense in nebula)
Relative Abundance (by mass)			•	
	(0.2%)	(0.4%)	(1.4%)	(98%)

Small rocky (volatile-poor) planets near the star

Large volatile-rich planets (giant planets) far away (beyond the "ice-line" ~2.7 AU)

→Does this explain the volatile (water) content of Earth (rocky planets)?

Where did water come from?

comet: ~50% carbonaceous chondrite: ~10% ordinary chondrite: ~1 % enstatite chondrite: <0.1 %

(note: continuous range of composition between carbonaceouschondrite and comets, e.g., Gounelle, 2011)

Isotopic observations (not only D/H but also C, N isotopes) \rightarrow The main source of water on Earth is not comets but some

materials similar to common meteorites.

 \rightarrow Did most of water-rich materials come from regions beyond the ice-line in the later stage of planetary accretion?

A model of water delivery to growing planets

Most of water comes from regions beyond the "ice line" due to **orbital scattering** in the **later stage of accretion** (i.e., after core formation) (see also Albarède, 2009)

Raymond et al. (2006) (Morbidelli et al., 2000)

• Late or early volatile acquisition?

- → different magma ocean evolution i.e, mantle chemistry (water affects the melting relationship).
- → different core chemistry (volatiles in the core)

Albarède (2009)

Earth and chondrites are "depleted" (95% or more)

- \rightarrow volatiles comes from material away from the "ice-line"
- \rightarrow late stage volatile acquisition

- Earth = "wet" planet?
 - total mass = 6.0 x 10²⁴ kg
 - ocean mass = 1.4 x 10²¹ kg
 - ocean/total = 0.023 %

\rightarrow Not much water is needed to make "wet" Earth (99% depletion from CI chondrite \rightarrow 0.1 %, i.e., ~40 ocean mass!)

Wood et al. (2010): discussions on Albarède (2009)

"Siderophile" and volatile elements are more depleted than other equally volatile but non-siderophile elements \rightarrow volatile acquisition before core formation \rightarrow Hydrogen in the core?

Volatile loss during **later-stage collisions** (giant impacts)?

Late stage collision large degree of heating → vapor-rich disk, magma ocean

Canup (2004)

Water distribution after the solidification of magma ocean (Elkins-Tanton)

Moon

אזר ותמ ים ים

Evolution of ocean through geological history global volatile circulation ← plate tectonics

Volatiles came from the basic building bocks of Earth (planets). \rightarrow Ocean has been formed through the global material circulation.

Hydrosphere-solid Earth interaction

- \rightarrow Hydrosphere (ocean) has evolved through the interaction with the solid Earth.
- \rightarrow But the nature of interaction is poorly understood.

negative feedback (stable water content) or positive feedback?

rheology $\leftarrow \rightarrow$ water (for deep mantle minerals)

Processes inside of the mantle: buffering water content (deep mantle melting)? Water distribution in the mantle

Water in the Moon

How does a **giant impact** affect the volatile acquisition?

- Evidence of water in the Moon
 - Geochemical evidence
 - Geophysical evidence
- Processes of Moon formation and volatiles
 - Physical conditions of a proto-lunar disk
 - Phase diagram of silicate

Outline

- "Wet" (not-so-dry) Moon?
 - Geochemical evidence
 - Geophysical evidence
 - Electrical conductivity
 - Q (tidal dissipation)
- Can we reconcile "wet" Moon with a giant impact model?
 - How does a planet get volatiles during condensation/accretion?
 - Giant impact and the fate of volatiles
 - Importance of liquid phases

Ted Ringwood (1930-1993)

The Moon is more depleted than Earth.

Patterns of volatile loss for Earth and the Moon are different. \rightarrow Volatile loss in the Moon in the **hydrogen and iron poor environment** (compared to the solar nebula)

Geochemical evidence for the "wet" Moon

~0.01 wt% of water in the "source region" (similar to the asthenosphere on Earth) → Where is water? Water in the deep interior?

Geophysical approach

 Geophysical approach: spatial (depth) distribution of water

(deep mantle)

- Water sensitive geophysical observations
 - Electrical conductivity
 - Seismic wave attenuation, tidal dissipation

Geophysical inference I: electrical conductivity

the Moon (Hood et al., 1982) Earth' s upper mantle (Philippine Sea) (Baba et al., 2012)

CPS, 須磨

Does "dry" model work?

"dry" olivine (ortopyroxene) conductivity: T-fO2 dependent

Conductivity of "dry" olivine

fO2 effect is important in the Moon (ΔT ~300 K)

Pressure effects are small

olivine (Xu et al., 2000)

pyrope (Dai and Karato., 2009)

Water effect is large

Wang et al., (2006)

Dai and Karato (2009)

Seleo-therms

CPS, 須磨

Geophysical inference II: Q

$$Q^{-1} \sim (\omega \tau)^{-\alpha} \propto \tau^{-\alpha}$$

 $\tau \propto \eta \propto \frac{1}{C_W^r}$ (for most cases), C_W : water content

$$\Rightarrow \qquad Q^{-1} \propto C_W^{\alpha r}$$

$$(0) \qquad (0) \qquad (0)$$

Aizawa et al. (2008)

Seismic Q of the Moon

tidal deformation (tele-)seismic wave propagation

Tidal dissipation \rightarrow Q of the deep mantle

(Peale and Cassen, 1978)

Energy dissipation occurs in most part in the deep interior of a planet.

Frequency dependence of tidal Q

CPS, 須磨

Lunar Q model

How could the Moon have acquired a substantial amount of water if it was formed by a giant impact?

Volatiles during condensation, accretion

The sequence of condensation depends on P

Sublimation: atoms or molecules escape into the gas phase from a solid.

אור ותמ ים ים

LUX ET VERITAS

Water (hydrogen) solubility

Water (hydrogen) solubility in melts is much larger than that in minerals.

10³ (H/10⁶ Si) =0.006 wt%

Initially condensed materials will be liquid phase if P is high

 \rightarrow how high is the pressure of the Moon forming disk?

Liquids can dissolve a substantial amount of water

Cooling and accretion time scale (in order to keep water, accretion must be quick)

- \rightarrow Cooling time scale is longer than accretion time scale
- \rightarrow Accreted materials are mostly liquids
- \rightarrow Initial materials for the Moon are "wet" (not so "dry").

later stage

Cooling magma ocean leads to stratified water content. \rightarrow "dry" near surface, "wet" deep interior (consistent with geophysical observations)

(Elkins-Tanton and Grove (2011))

conclusions

- The Moon's interior is not bone dry. ← electrical conductivity, tidal Q (~0.01 wt% water in the deep mantle (similar to the upper mantle of Earth))
- Condensation after a giant impact likely involves liquid phases. → if cooling time scale > accretion time scale, then a substantial amount of water can be acquired.
- After accretion, cooling magma ocean leads to stratification in water content → "wet" deep mantle, "dry" shallow mantle (explain geochemical and geophysical observations)

Evolution of ocean through geological history global volatile circulation \leftarrow plate tectonics

Earth's ocean is formed mostly from water inside of Earth.

Has ocean been there for billions of years? If so how is the ocean mass stabilized?

\rightarrow How is water distributed in the current Earth's interior?

 \rightarrow What control the ocean mass evolution?

(+ water in the core)

Earth's interior is **potentially** a big water reservoir. But how much is there really?

Ocean has been formed by global water circulation.

→ ocean mass is controlled by deep mantle processes (if mantle is homogeneous, then ocean mass is sensitive to regassing rate)

McGovern-Schubert (1989) Franck-Bounama (2001) Rüpke et al. (2006) Korenaga (2008)

Water distribution in the mantle from geological observations

- From basalts (Ito et al., 1983; Dixon et al., 2002)
 - Indirect (needs a model of melting)
 - "global" (MORB, OIB)

- From mantle rocks (Bell and Rossman, 1992)
 - direct
 - limited to shallow upper mantle
 - influence of loss/gain needs to be evaluated

Table 1. Estimates used in Figure 1.

	oceanic ridge magmatism	hotspot magmatism	arc magnatism	subduction of altered oceanic crust	subduction of amphibole in altered oceanic crust	subduction of sediments
rock ³ (x 10 ¹⁵ g/yr)	+56	+4.4	+0.5 to 10	-56(60.4)	-0.7 to 3.7	-1.8 to 3.5
H ₂ O (wt\$)	0.2	0.305	2	1 to 2	2	2.5 to 20
Cl (ppm)	48	2905	900	25 to 75	150	430 to 2500
density (g/cm ³)	2.9	2.9	2.8	2.9	3.1	1.2 to 2.3
volume (x10 ¹⁵ cm ³ /yr)	20	1.5	1.2 to 3.6	0.25 to 1.2	1.5	
thickness (km)	6.5	-		5.5		0.5

Rock	Ce (p.p.m.)‡		H₂O	Dehydration
		H ₂ O/Ce	(wt%)	(%)
Crustal components: Pre-subdue	ction			_
Atlantic MORB*	12	250	0.3	
Pacific MORB*	14	150	0.2	
Mature oceanic crust*	~6	2,500-5,000	23	
Global subducted sediment†	57	1,280	7.3	
Crustal components: Post-subdu	uction			-
Mature oceanic crust	~6	~100	0.06§	97
Global subducted sediment	57	<100	<0.57	>92
Mantle components				
DMM*	0.5	200	0.010	
Atlantic FOZO	3	250	0.075	
Pacific FOZO¶	3.8	200	0.075	
EM#	4	<100	<0.04	

Ito et al. (1983)

Dixon et al. (2002)

MORB source region (asthenosphere): well constrained (~0.01 wt%) OIB source regions: water-rich (FOZO) (~0.1 wt%) How are they distributed?

localized? global (layered)?

A conventional model of water distribution in the mantle

Franck-Bounama (2001) Dixon et al. (2002) Rüpke et al. (2006)

$$\frac{\partial H_2 O_{mantle}}{\partial t} = -\xi_{H2O} \cdot R(t) \cdot H_2 O_{mantle}(t) + S(t)$$
$$\frac{\partial H_2 O_{ocean}}{\partial t} = \xi_{H2O} \cdot R(t) \cdot H_2 O_{mantle}(t) - S(t)$$

R(t): mantle processing (degassing) rate S(t): water recycling (regassing) rate

Geochemical approach (MORB, OIB) + simple geodynamic modeling → "plum pudding" model

mantle water loss [ocean masses]

The ocean mass changes sensitively to the regassing rate in a single component mantle model.

Geochemical approach + simple model \rightarrow "plum pudding" model

- → inconsistent with the definition of FOZO (a common component of all OIB)
- \rightarrow ocean mass is sensitive to mantle water (unstable)

What is wrong??

1. Spatial distribution of water is poorly constrained by the geochemical approach.

 \rightarrow "plum-pudding" model may be wrong.

2. Whole mantle is treated as a single unit.

 \rightarrow there may be some buffering processes that requires additional parameter in the modeling.

Any observations to suggest internal processes controlling water circulation? → geophysical approach

Water distribution in the mantle from geophysical observations

- From electrical conductivity
 - direct (sensitive to water content but insensitive to major element chemistry)
 - lab study is a little complicated, but a good data set is now available.
 - large uncertainties in geophysical observations

• From seismological observations

- Indirect (modestly sensitive to water content but sensitive to major element chemistry)
- lab study is incomplete (Q-effect).
- high-resolution observations

Water may affect seismological observations

- T-effect and water-effect on seismic wave velocities
- T-effect and water-effect on the phase boundary

$$\begin{pmatrix} \delta \log V \\ \delta h \end{pmatrix} = \begin{pmatrix} \frac{\partial \log V}{\partial T} & \frac{\partial \log V}{\partial C_W} \\ \frac{\partial h}{\partial T} & \frac{\partial h}{\partial C_W} \end{pmatrix} \begin{pmatrix} \delta T \\ \delta C_W \end{pmatrix}$$

$$\rightarrow \begin{pmatrix} \delta T \\ \delta C_W \end{pmatrix} = \begin{pmatrix} \frac{\partial \log V}{\partial T} & \frac{\partial \log V}{\partial C_W} \\ \frac{\partial h}{\partial T} & \frac{\partial h}{\partial C_W} \end{pmatrix}^{-1} \begin{pmatrix} \delta \log V \\ \delta h \end{pmatrix}$$

Water-temperature distribution from VP,s and MTZ thickness

Meier et al. (2009)

puzzling results \leftarrow due to the insensitivity of seismological properties to water content?

seismic wave velocity depends weakly on water content but strongly on the major element chemistry and T

Influence of water on seismic discontinuities

Electrical conductivity depends strongly on water content (relatively weakly depends on T and other factors)

Sensitivity of some geophysical observables to water content

	sensitivity to:			resolution of geophysical	
	Т	C (major)	C (water)	d	observations
Seismic velocity	0	\bigcirc	\bigtriangleup	Х	
Seismic discontinuity	\bigcirc	\bigcirc	\bigtriangleup	Х	
Seismic Q	\bigcirc	Х	•?	\triangle	\bigtriangleup
Seismic anisotropy	\triangle	Х	•	\triangle	*
Electrical conductivity	\triangle	\bigtriangleup	•	Х	

*: mostly for the upper mantle

Properties involving thermally activated processes are sensitive to water content. Lab studies are more complete for electrical conductivity than for Q and LPO.

Testing the model for the upper mantle

$$\sigma = \sigma_{wad} \left(1 + \frac{1 - \phi}{\frac{1}{\sigma_{gar} / \sigma_{wad} - 1} + \frac{\phi}{3}} \right) = \alpha \cdot \sigma_{wad}$$

$$\alpha = 0.65$$

$$\sigma_{wad} = A \cdot C_W^r \cdot \exp\left(-\frac{H_{CW}^*}{RT}\right) + B \cdot \exp\left(-\frac{H_{CD}^*}{RT}\right)$$

Electrical conductivity and water in the mantle

Karato (2011)

"Plum pudding" model is not consistent with observed electrical conductivity. Inferred layered water distribution suggests **mid-mantle melting**.

• Evidence for 410-km melting

What happens after 410-km partial melting?

 Partial melting (at 410km) homogenizes the composition of residual solids → water content in the upper mantle is constant → stabilizes the degassing rate

$$\frac{dX^{ocean}}{dt} = \frac{1}{\tau_1} X^{mantle} - R = \frac{1}{\tau_1} \left(X^{total} - X^{ocean} \right) - R$$

$$\frac{dX^{mantle}}{dt} = -\frac{1}{\tau_1} X^{mantle} + R$$

$$\Rightarrow \overline{X}^{ocean} = X^{total} - \tau_1 R$$
: ocean mass is sensitive to regassing rate

 \rightarrow ocean mass is less sensitive to regassing rate

Deep mantle melting buffers (stabilizes) the ocean mass.

Water has strong effects on the melting under the deep mantle conditions

- Addition of water reduces the solidus of the lower mantle assembly by more than ~1500 K
- Addition of water changes the composition of melts and the residual: highly ultramafic melts + silica-rich residual

 \rightarrow Geochemical evolution of Earth

Inoue et al. (1994)

Melting occurs in the perovskite-rich system (+ water) at 25 GPa and 1500 C (without water, one would need ~3000 C for melting). Melt is (Mg,Fe)O rich \rightarrow heavy melt. Residual solid is SiO₂ rich.

conclusions

- Water distribution in the planetary interior can be mapped from geophysical observations.
- Electrical conductivity

highly sensitive to water content, insensitive to other variables (**seismological observations** - insensitive to water, non-sensible results)

- Mantle water content in Earth's mantle is layered.
 - ~0.01 wt% for the upper mantle, ~0.1 wt% for the transition zone

→ partial melting at 410-km?

- Ocean mass may be buffered by the partial melting at 410-km
- Melting could also occur below 660 km → (Mg,Fe)O-rich (dense) melt.

Plate tectonics (mode of mantle convection)

- Plate tectonics provides an efficient way to circulate volatiles (→ stabilizes the surface ocean?).
- Plate tectonics is not an obvious mode of mantle convection: Plates may be too strong to be involved in convection ("stagnant lid").
- Does plate tectonics occur in other terrestrial planets (e.g., super-Earths)?

Modes of convection (Influence of near-surface layer: **T-effect**, water effect)

Classification using a two-parameter model

Plate tectonics occurs when the near surface layer is modestly strong (<200 MPa (for Earth))

If the plate is too strong \rightarrow "stagnant lid" convection

CPS, 須磨

Plate tectonics versus stagnant-lid convection

- [driving force (gravitational energy release)] ← →
 [resistance for convection (energy dissipation due to deformation)] = [plate deformation] or [stagnant lid (convection below the lid))]
- strong plate → stagnant-lid convection
 weak plate → plate tectonics
 [critical strength ~100-200 MPa (for Earth)]

Is the lithosphere of Earth weak enough for plate tectonics?

- For Earth, the simplest model predicts too high strength for plate tectonics
 - "water" effects?
 - shear localization (grain-size)?
- How about on other planets?

Kohlstedt et al. (1995)

How to weaken the lithosphere? Brittle $\leftarrow \rightarrow$ Ductile

friction: Chernak-Hirth (2010)

flow: Farla et al. (2012, submitted)

Weakening in the brittle regime is limited, but weakening in the ductile regime can be large.

How about other planets?

- Size (mass)
- Water
- Surface temperature

How do these factors affect [driving force] and [resistance for plate subduction] in other planets?

- → Basics of convection (boundary layer theory)
- \rightarrow Strength of plates

A boundary layer model of convection When the fluid layer is highly unstable, the temperature-gradient and deformation are localized in thin "boundary layers".

$$F_{drive} = h\Delta T \cdot \rho \alpha g$$

$$F_{resist} = \eta \frac{\partial \upsilon}{\partial x} \approx \eta \frac{\upsilon}{L/2}$$

$$F_{resist} = F_{drive} \rightarrow h = \frac{2\eta \upsilon}{L\Delta T \cdot \rho \alpha g}$$
(1)

now, plate thickness (h) is determined by plate cooling

eliminating v from (1) and (2),

$$\frac{h}{L} = 2\left(\frac{\eta\kappa}{L^{3}\rho\alpha g\Delta T}\right)^{\frac{1}{3}} = 2Ra^{-\frac{1}{3}}$$
(3)
$$\rho = \frac{1}{4}\frac{\kappa}{L}Ra^{\frac{2}{3}}$$
(4)

heat flux

$$J = k \frac{\Delta T}{h} = J_o N u \quad (J_o = k \frac{\Delta T}{L}) \text{ (Nu: Nusselt number)}$$

$$\Rightarrow N u = \frac{L}{h} = \frac{1}{2} R a^{\frac{1}{3}}$$
(5)

Turcotte and Oxburgh (1967)

$$Ra = \frac{\alpha \rho g L^3 \Delta T}{\eta \kappa}$$

$$Ra = \frac{\alpha \rho g L^3 \Delta T}{\eta \kappa}$$

- If viscosity is not strongly dependent on planetary mass, *Ra* increases with planetary mass.
- \rightarrow large planet \rightarrow large driving force + thin plate
- \rightarrow easy for plate tectonics to operate
- But viscosity (average viscosity) may strongly depend on planetary size---- .
- Also plate strength may depend on "other parameters".

- Both the driving force and the resistant to plate deformation depends on Rayleigh number + strength (plate strength, mantle viscosity)
- Both Rayleigh number and strength depend on planetary size + something else.
- Something else
 - water (e.g., Regenauer-Lieb (2006), Korenaga (2010))
 - grain-size [surface temperature] (e.g., Landuyt-Bercovici (2009), Foley-Bercovici (2012))

Valencia-O'Connell (2007):

Planetary mass is most important

- \rightarrow large mass \rightarrow high Rayleigh number
- \rightarrow large driving force + thin plate

Korenaga (2010) : friction coefficient (strength of lithosphere) is most important, the planetary mass is NOT important

M/M⊕

Foley-Bercovici (2012):

Plate strength is controlled by **grain-size reduction**. Driving force increases with planet size. Grain-size reduction depends on (near surface) temperature through grain-growth. Both planet size and surface temperature are important.

Limitations of the previous studies

- For the driving force, pressure dependence of viscosity has been ignored in all previous studies (mass → P, large effects).
- For the **resistance force**, conditions for plate failure (deformation) are not well understood (essence of **mineral physics of strength reduction** has not been incorporated in the previous large-scale models).

Doesn't planetary size matter? (1)

Planetary size (mass) changes plate thickness (small planet \rightarrow thick plate).

Lithosphere thickness determined by dehydration-hardening (Karato (1986), Hirth-Kohlstedt (1996)) depends on planetary size (due to gravity): lithosphere will be thicker for a smaller planet

Doesn't planetary size matter? (2)

Planetary size could change the **driving force** through the P-dependence of viscosity

- Rayleigh number (partly) controls the plate thickness and vigor of convection
- Rayleigh number depends on viscosity
- Viscosity changes with T and P (and water content ---)
 - But P-effect was ignored---.

$$Ra = \frac{\rho \alpha g \Delta T L^3}{\eta(T, P) \kappa}$$

Viscosity of planetary materials depends strongly on T and P. P-effect is potentially very large!

CPS, 須磨

Internal structure of a super-Earth

Viscosity of solids increases with P at low P. Is this valid at higher P in super-Earths?

Viscosity-mass relationship (T-viscosity interaction (self-regulation): Tozer effect)

$$M \cdot Heat = A \cdot Nu \cdot \frac{k(T - T_s)}{d}$$
 (energy balance \leftarrow T- η feedback)

$$Nu = \left(\frac{\rho g \alpha (T - T_s) d^3}{\kappa \eta}\right)^{\beta}, \qquad \eta \propto T^{-\theta} P^{\psi}$$

$$\rightarrow T \propto M^{\frac{2-4\beta+2\psi\beta}{3(1+\beta+\theta\beta)}} \text{ and } \eta \propto M^{-\frac{(2-4\beta+2\psi\beta)}{3(1+\beta+\theta\beta)}+\frac{2}{3}\psi} \approx M^{-\frac{2}{3}+\frac{8}{3}\frac{\psi}{\theta}}$$

\rightarrow Pressure dependence of viscosity will change the η -M relation

Karato (2011)

How to weaken the lithosphere? Brittle $\leftarrow \rightarrow$ Ductile

Weakening in the brittle regime is limited, but weakening in the ductile regime can be large. Weakening in the ductile regime depends on T and water content.

Conclusions

• In order to assess if **Plate Tectonics** occurs on other planets (e.g., super-Earths), we need to know what controls the magnitude of **driving force** and the **resistance for plate deformation**.

Major remaining issues:

Physical mechanisms of **localized deformation** Dependence of viscosity on **pressure** (phase transformations)

Summary

- Volatile acquisition during planetary formation
 - early or late acquisition? (\rightarrow H in the core?)
 - geochemical observations
 - liquid phases control volatile acquisition
 - volatility $\leftarrow \rightarrow$ affinity to liquids (to Fe etc.)
- Volatile circulation in a planet

(longevity of the surface ocean)

- The role of deep (mid-) mantle melting
- Plate tectonics on other planets?
 - "rheological properties"
 - shear localization, deep mantle viscosity

Viscosity changes also with crystal structure/ chemical bonding.

normalized temperature

In most of super-Earth's mantle, MgO is the softest phase. MgO changes its structure from B1 to B2 at ~0.5 TPa. B2 structure is softer than B1 structure.

(modified from Karato (1989))

References(1)

•Aizawa, Y., et al., 2008: Seismic Properties of Anita Bay Dunite: an Exploratory Study of the Influence of Water, J. Petrology 49 (4), 841-855

•Albarède, F., 2009: Volatile accretion history of the terrestrial planets and dynamic implications, Nature 461, 1227-1233

•Bernard J. et al., 2010: The lead isotopic age of the Earth can be explained by core formation alone, Nature 465, 767–770

•Canup, R., M., 2004: Simulations of a late lunar-forming impact, Icarus 168, 433–456

 Chernak, L.J., et al., 2010: Deformation of antigorite serpentinite at high temperature and pressure, Earth and Planetary Science Letters 296, 23–33

 Christensen, U., R., et al., 1989: The heat transport by convection rolls with free boundaries at high rayleigh number, Geophysical & Astrophysical Fluid Dynamics 46, 93-103

• Dai, L., et al., 2009: Electrical conductivity of wadsleyite at high temperatures and high pressures, Earth and Planetary Science Letters 287, 277–283

Dante, S. et al., 2011: Cosmochemical View of the Solar System, ELEMENTS 7, 11-16
Desch, S., J., et al., 2011: A Model of the Moon's Volatile Depletion, 42nd Lunar and Planetary Science Conference 2011

• Efroimsky, M., 2012: TIDAL DISSIPATION COMPARED TO SEISMIC DISSIPATION: IN SMALL BODIES, EARTHS, AND SUPER-EARTHS 746, 150

References(2)

•Foley-Berovici, 2012: The conditions for platetectonics on super-Earths: Inferences from convectionmodels with damage, Earth and Planetary Science Letters 331–332, 281–290

• Grot, M., 2012: Long-term Evolution of the Martian Crust-Mantle System.

Space Science Reviews, in review

• Hauri, E., H., et al., 2011: High Pre-Eruptive Water Contents Preserved in Lunar Melt Inclusions, Science 333, 213-215

•Inoue, T., 1994: Effect of water on melting phase relations and melt composition in the system Mg2SiO4-MgSiO3-H2O up to 15 GPa, Physics of the Earth and Planetary Interiors 85, 237–263

•Karato, S., 1989: Plasticity-crystal structure systematics in dense oxides and its implications for creep strength of the Earth's deep interior: A preliminary result, Phys. Earth Planet. Int. 55, 234–240

• Karato, S., 2010: Rheology of the deep upper mantle and its implications for the preservation of the continental roots: A review, Tectonophysics 481, 82–98

 Karato, S., 2011: Water distribution across the mantle transition zone and its implications for global material circulation, Earth and Planetary Science Letters 301, 413–423

• Karato, S., 2011: Rheological structure of the mantle of super-Earths: Some insights from mineral physics, Icarus 212, 14-23

References(3)

•Kohlstedt, D., L., et al., 1995: Strength of the lithosphere: Constraintsimposed by laboratoryexperiments, J. Geophys. Res. 100, 17587–17602

•Korenaga, J., 2010: On the likelihood of plate tectonics on super-Earths: Does size matter?, ApJ 725, L43-46

• Landuyt, W., et al., 2009: Formation and structure of lithospheric shear zones with damage, Phys. Earth Planet. Int. 175, 115-126

• Marty, B. et al., 2006: Water in the Early Earth, Reviews in Mineralogy and Geochemistry 62, 421-450

•Meiera, U., et al., 2009: Global variations of temperature and water content in the mantle transition zone from higher mode surface waves, Earth and Planetary Science Letters 282, 91–101

•Regenauer-Lieb, K., 2006: Water and Geodynamics, Reviews in Mineralogy & Geochemistry 62, 451-473.

• Robert N., et al., 1989: Electrical Conduction in Olivine, JOURNAL OF GEOPHYSICAL RESEARCH 94, 5829-5839

•Sean et al., 2006: High-resolution simulations of the final assembly of Earth-like planets I. Terrestrial accretion and dynamics, Icarus 183, 265–282

Solomatov, V., S., et al., 1997: Three regimes of mantle convection with non-

Newtonian viscosity and stagnant lid convection on the terrestrial planets, Geophys. Res. Lett., 24, 1907–1910

References(4)

• Tauzin, B., et al., 2010: Seismic evidence for a global low-velocity layer within the Earth's upper mantle, Nature Geoscience 3, 718–721

•Toksöz, M., N., et al., 1974: Structure of the Moon, REVIEWS OF GEOPHYSICS 12, 539-567

•Turcotte, D., L., et al., 1967: Finite amplitude convection cells and continental drift, J. Fluid Mech. 28, 29-42

•Valencia, D., et al., 2007: Inevitability of Plate Tectonics on Super-Earths, ApJ 670, L45-L48

•Wang, D., et al., 2006: The effect of water on the electrical conductivity of olivine, Nature 443, 977-980

•Xua, Y., et al., 2000: Pressure effect on electrical conductivity of mantle olivine, Physics of the Earth and Planetary Interiors 118, 149–161

http://www.dearastronomer.com/2012/03/06/do-moons-of-gas-giants-affect-thehabitable-zone/

http://alchemipedia.blogspot.jp/2009/08/concept-of-theia.html