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 Some background
— Why water?

— Processes controlling the water content of a planet

e Water in the Moon

— Volatile acquisition during the later stage of planetary
formation (giant impact)

 Water in Earth
— Water distribution in Earth
— Global water circulation and the stability of ocean mass
— Plate tectonics on terrestrial planets (super-Earths)
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Why water?

life &> water (?) [“habitable zone”]
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Water = melting, rheological properties
- dynamics and evolution of terrestrial planets
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Processes controlling the water (volatiles)
distribution in terrestrial planets

* Condensation of nebula
* Collisions, magma ocean: volatile loss?
 Magma ocean solidification, over-turn

* Solid-state convection, plate tectonics
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C and O are produced by He burning
and modified in the CNO cycle

C-, Ne-, and O-burning produce Mg,
Si, and S in abundance

Si burning produces elements to build ‘the
_ic— Fe peak; centered around the tightly-bound
56Fe nucleus

‘Beyond the Fe p
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the solar photosphere show an excellent

correlation for most elements

log (Elemental Abundances in the Cl Chondrites)

Lauretta (2011)
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log (Elemental Abundances in the Solar Photosphere)

(terrestrial) planets ~ meteorite ~ solar abundance
(except for volatile elements)
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Cl-chondrite-like bulk
abundances of refractory
elements are characteristic

of chondritic meteorites

Element depletions are a smooth
function of volatility, expressed as
0.1 the 50% condensation temperature

Bulk Abundance Relative
to Si and the Cl Chondrites

CV Chondrite Abundances

o Siderophile and chalcophile elements
e Lithophile elements

0.01
500 1000 1500 2000

50% Condensation Temperature (K) Lauretta (2011)

Meteorites (~planets) ~ solar abundance — volatiles (condensation)
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Rocks and metals condense, hydrogen
compounds stay vaporized.

Condensation in the solar nebula

Materials in the Solar Nebula

Examples

Typical
Condensation
Temperature

Relative Abundance
(by mass)

Metals

Rocks

Hydrogen Compounds

Hydrogen compounds, rocks,
. and metals condense.

Light Gases

v/

iron, nickel,
aluminum

1,000~
1,600 K

(0.2%)

silicates

500~
1,300 K

(0.4%)

25

o

water (H,0)
methane (CHy)
ammonia (NH3)

<150 K

(1.4%)

v

!
hydrogen, helium

(do not condense
in nebula)

(98%)
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Mid-plane temperature (K)
I

Small rocky (volatile-poor) planets near

the star

Distance to Sun (au)

Large volatile-rich planets
(giant planets) far away (beyond the “ice-line”

~2.7 AU)

- Does this explain the volatile (water)
content of Earth (rocky planets)?
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Where did water come from?

comet: “50%
carbonaceous chondrite: ~10%

ordinary chondrite: ~1 %
enstatite chondrite: <0.1 %

(note: continuous range of composition between carbonaceous-
chondrite and comets, e.g., Gounelle, 2011)



13C/12C
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Isotopic observations (not only D/H but also C, N isotopes)
— The main source of water on Earth is not comets but some

materials similar to common meteorites.
— Did most of water-rich materials come from regions beyond

the ice-line in the later stage of planetary accretion?
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A model of water delivery to growing planets

Most of water comes from regions beyond the “ice line” due to orbital
scattering in the later stage of accretion (i.e., after core formation)
(see also Albarede, 2009)
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* Late or early volatile acquisition?

- different magma ocean evolution i.e, mantle chemistry
(water affects the melting relationship).

- different core chemistry (volatiles in the core)
Albarede (2009)
Earth and chondrites are “depleted” (95% or more)
— volatiles comes from material away from the “ice-line”

—> late stage volatile acquisition
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* Earth = “wet” planet?
— total mass = 6.0 x 10%% kg

— ocean mass = 1.4 x 10%! kg
— ocean/total =0.023 %

- Not much water is needed to make “wet” Earth
(99% depletion from Cl chondrite =2 0.1 %, i.e., ~40 ocean mass!)
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“Siderophile” and volatile elements are more depleted than other equally
volatile but non-siderophile elements > volatile acquisition before core

formation - Hydrogen in the core?
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Volatile loss during later-stage collisions
(giant impacts)?
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Late stage collision

large degree of heating
— vapor-rich disk, magma ocean

small metal droplet magma ocean

e

metal pond

diapirs

solid mantle

Canup (2004)
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Water distribution after the solidification of magma ocean
(Elkins-Tanton)

before overtu
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Evolution of ocean through geological history
global volatile circulation € plate tectonics

#~— Continental |
crust

Volatiles came from the basic building bocks of Earth (planets).
- Ocean has been formed through the global material circulation.
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Hydrosphere-solid Earth interaction

- Hydrosphere (ocean) has evolved through the interaction with the solid Earth.
— But the nature of interaction is poorly understood.

A

) Korenaga (2008) McGovern and Schubert (1989)

water in the ocean a Mid-Ocean Ridge Continent

water in the ocean

water in the mantle Transition Zone ~0.1 Wt% A
water in the mantle 4 1 4 W
Lower Mantle ~0.1 wt%
> > e
<. o
. present . present
time time
Karato (2011)

negative feedback (stable water content) or positive feedback?
rheology €—> water (for deep mantle minerals)
Processes inside of the mantle: buffering water content (deep mantle melting)?

Water distribution in the mantle
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Water in the Moon

How does a giant impact affect the volatile acquisition?

e Evidence of water in the Moon
— Geochemical evidence

— Geophysical evidence

* Processes of Moon formation and volatiles
— Physical conditions of a proto-lunar disk
— Phase diagram of silicate

12.7.18 CPS, 7E[E& 22



* “Wet” (not-so-dry) Moon?
— Geochemical evidence
— Geophysical evidence
* Electrical conductivity
e Q (tidal dissipation)
* Can we reconcile “wet” Moon with a giant impact model?
— How does a planet get volatiles during condensation/accretion?
— Giant impact and the fate of volatiles

* Importance of liquid phases

12.7.18 CPS, 7E[E& 23



Ringwood-Kessen (1977)
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The Moon is more depleted than Earth.

Patterns of volatile loss for Earth and the Moon are different. = Volatile loss in the Moon
in the hydrogen and iron poor environment (compared to the solar nebula)
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~0.01 wt% of water in the “source region” (similar to the asthenosphere
on Earth) > Where is water? Water in the deep interior?
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Geophysical approach

* Geophysical approach: spatial (depth)
distribution of water
(deep mantle)
* Water sensitive geophysical observations
— Electrical conductivity

— Seismic wave attenuation, tidal dissipation
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Geophysical inference I:

electrical conductivity

center surface
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(Hood et al., 1982) (Baba et al., 2012)
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Does “dry” model work?
“dry” olivine (ortopyroxene) conductivity: T-fO2 dependent
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Conductivity, S/m

fO2 effect is important in the Moon ( AT
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Conductivity of “dry” olivine

Olivine Data and Standard Models

S02 (A1=1.4, 1.5, 1.6 eV)
—_ __ __ __ SO1 (Shankland & Duba, 1990)
___________ SCO (Shankland & Duba, 1990)
¢ SCO[100] heating (Shankland & Duba, 1990)
® SCO (Tyburczy & Roberts, 1990)
& JCD (Constable & Duba, 1990)
O RSP (Duba et al.,, 1974)
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log(c, S/m)
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Water effect is large
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Seleo-therms

800 1200 1600
depth, km

- ~0.01 wt% of water provides a reasonable T-z.
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Seismic Q of the Moon

Category C (meteoroid impact) Category A, (moonquake)
8:09 hr, 8 April 1970 13:03 hr, 23 May 1970
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shallow Moon: very high Q

deep Moon: lower Q (but poorly
constrained by seismological obs.)
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tidal deformation
(tele-)seismic wave propagation
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Energy dissipation occurs in most part in
the deep interior of a planet.

Log [DISSIPATION {ergs cm > sec "))

(Peale and Cassen, 1978)

12.7.18 CPS, 7E[E& 36



lapetus

Mars

Earth

Superearth

Larger Superearth

(viscosity = 10! Pa s,
(after Efroimsky, 2012) Elastic constant=10'! Pa)
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Lunar Q model

500
400 | 1, 1 or
0 /0y =(Cy /Cyy)" , ar=03
300 }
Q |

200 Water-rich (Earth-like) deep mantle ?
ool Earth-like (0.01 wt%) (Hauri et al., 2011)
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How could the Moon have acquired a substantial
amount of water if it was formed by a giant impact?
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Volatiles during condensation, accretion

b Silicate vapour

Mars-sized
impactor
Proto-Earth
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The sequence of condensation depends on P
Melting . Evaporation
Solidification - “"Condensation

Condensation

Sublimation: atoms or molecules escape
into the gas phase from a solid.
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(silicate melt)
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Water (hydrogen) solubility in melts is much larger than that in minerals.
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Initially condensed materials will be liquid phase if P is high
—> how high is the pressure of the Moon forming disk?

1072 . T . . —
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g Mo container
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Pressure, bar
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Cooling and accretion time scale
(in order to keep water, accretion must be quick)
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(Desch-Taylor, 2011)
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(Idaetal., 1997)

— Cooling time scale is longer than accretion time scale
- Accreted materials are mostly liquids
—> Initial materials for the Moon are “wet” (not so “dry”).

12.7.18 CPS, 7E[E& 46



Radius [km]

later stage

Cooling magma ocean leads to stratified water content.
=>“dry” near surface, “wet” deep interior (consistent with
geophysical observations)
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conclusions

The Moon’s interior is not bone dry. < electrical
conductivity, tidal Q (~0.01 wt% water in the deep mantle
(similar to the upper mantle of Earth))

Condensation after a giant impact likely involves liquid
phases. = if cooling time scale > accretion time scale,
then a substantial amount of water can be acquired.

After accretion, cooling magma ocean leads to
stratification in water content = “wet” deep mantle,
“dry” shallow mantle (explain geochemical and
geophysical observations)
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Evolution of ocean through geological history
global volatile circulation < plate tectonics

«~— Continental

Earth’s ocean is formed mostly from water inside of Earth.

Has ocean been there for billions of years? If so how is the ocean
mass stabilized?

- How is water distributed in the current Earth’s interior?

- What control the ocean mass evolution?
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Earth’s interior is potentially a big water reservoir.
But how much is there really?
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Ocean has been formed by global water circulation.

> ocean mass is controlled by deep mantle processes

(if mantle is homogeneous, then ocean mass is sensitive to regassing rate)

Arc volcarism

Fore-aro
Hycrabion of cosanic plates  water sxpuikion

1 Water outgassing
at mid-ocean ridges
| and hotspots

Mantle regassing ath
I subduction zones |

'

McGovern-Schubert (1989)
Franck-Bounama (2001)
Ripke et al. (2006)
Korenaga (2008)
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Water distribution in the mantle from

geological observations

* From basalts (Ito et al., 1983; Dixon et al., 2002)

— Indirect (needs a model of melting)
— “global” (MORB, OIB)

* From mantle rocks (zell and Rossman, 1992)
— direct

X T T T T
3700 3600 3500 3400 3300 3200

— limited to shallow upper mantle
— influence of loss/gain needs to be evaluated
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N i -
Table 1, Estimates wused in Figure 1. Table 1 Dehydration efficiency

Rock Ce (p.p-m.)t H0 Dehydration
_ subduction H,0O/Ce (Wt%) (%)
oceanic subduction of amphibole
ridge hotspot arc of altered in altered subduction of .
magmatism magmatism magmatism oceanic crust  oceanic crust sediment ‘Atlantic MORB* 12 250 0.3
Pacific MORB* 14 150 © 0.2
Mature oceanic crust* ~6 2,500-5,000 2-3
rock?, _ +56 +hoy +0.5 to 10 -56(60.4) -0.7 to 3.7 -1.8 to 3.5 Global subducted sedimentt 57 1.280 73
(x10 7 g/yr) . .
1 & fu : - N
}({52,) 0.2 s 2 fte? 2 EuSHto il Mature oceanic crust ~6 ~100 0.06§ 97
c1 [y} 290° 300 25 to 75 150 430 to 2500 Global subducted sediment 57 <100 <0.57 >92
(ppm)
density 2.9 2.9 2.8 2.9 3.1 1.2 to 2.3 DMM* 0.5 200 0.010
(g/em?) , Aflantic FOZO| 3 250 0.075
volumg 20 1.5 1.2 to 3.6 0.25 to 1.2 1.5 Pacific FOZOY 3.8 200 0.075
(x10°° em’/yr) EM# 4 <100 <0.04
thickness 6.5 — - 5.5 -— 0.5
(km)

Ito et al. (1983) Dixon et al. (2002)

MORB source region (asthenosphere): well constrained (~0.01 wt%)
OIB source regions: water-rich (FOZO) (~0.1 wt%)
How are they distributed?
localized?
global (layered)?
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A conventional model of water distribution in the mantle

Mid-Ocean Ridge Continent

~0.01 wt%

Franck-Bounama (2001)
EM Dixon et al. (2002)
Ripke et al. (2006)

Transition Zone ~0.01 wt%

Lower Mantle
~0.07 wt% FOZO
EM ~0.075 wt%
<0.04 wt%

_aHzoa;namle = _§H20 ) R(t) | H20mantle (t) + S(t)

MZ?#= gHZO 'R(t)'HZOmantle(t)_S(t)

R(t) : mantle processing (degassing) rate
S (t) : water recycling (regassing) rate

Geochemical approach (MORB, OIB) + simple geodynamic modeling
- “plum pudding” model
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mantle water loss [ocean masses]

3
i eI 0.01
] e T RN
R 0.1q
:/II/// \\\\\‘\s‘__§
A AT e TR e
L 0.20\
17N .
(N Regassing rate
o . /

N
N \\
| \\ S o 0-30
S RN
r N S S
N S <
L N ~ <
N ‘\\

L N -~ __
T R N e T

i > 0.40

Franck-Bounama (2001)

0O 05 1 156 2 25 3 35 4 45
time [Ga]

The ocean mass changes sensitively to the regassing rate in a single
component mantle model.
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Geochemical approach + simple model = “plum pudding” model
— inconsistent with the definition of FOZO
(a common component of all OIB)

—> ocean mass is sensitive to mantle water (unstable)

What is wrong??

1. Spatial distribution of water is poorly constrained by the geochemical
approach.
-2 “plum-pudding” model may be wrong.

2. Whole mantle is treated as a single unit.

- there may be some buffering processes that requires additional parameter in
the modeling.

Any observations to suggest internal processes
controlling water circulation? - geophysical approach
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Water distribution in the mantle from

geophysical observations

* From electrical conductivity

— direct (sensitive to water content but insensitive to major
element chemistry)

— lab study is a little complicated, but a good data set is now
available.

— large uncertainties in geophysical observations

* From seismological observations

— Indirect (modestly sensitive to water content but sensitive
to major element chemistry)

— lab study is incomplete (Q-effect).
— high-resolution observations
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Water may affect seismological observations

1141 O" ”660”
-~
\ ! \ @
|\ P e e »\\ ¢
A\ N\ ©
; D o wet
| X o wet
S
T
L
dry dr
h 410
660
cooL WET HOT depth (pressure)

* T-effect and water-effect on seismic wave velocities
* T-effect and water-effect on the phase boundary

(Olog V' (Loet 21_ng\( oT \

Lo )7 w EJLMW}

oT aC,,

( dlogV alogV\ =

N oT oT aC,, 510gV
(6CW)_L oh ﬂj ( oh )

aT aC,,
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Water-temperature distribution from Vps and MTZ thickness

ad ad
& = F2oT + 5o56H;0,

dinV, dinV.
sinv, = LWssr LN 5
Ws =37 o7 + 3,0 °r20

Temperature vanat:on Water content variation

_— . —
<100 %0 0 50 100 050 -025 000 025 050
dev around mean ..., [C°] dev around mean,,,, ., [wt.%H,0]

Meier et al. (2009)
puzzling results € due to the insensitivity of seismological
properties to water content?
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seismic wave velocity depends weakly on water content
but strongly on the major element chemistry and T

4 — olivine

—— wadsleyite
' — ringwoodite
2

pyrolite <-> harzburgite
-4 AT=+/- 100K

...................

Cw, Wt%
Karato (2011)
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Influence of water on seismic discontinuities

440} olivine-wadsleyite 410" "660"
420} w
=
_\Ec = wet
. g .

o L
% dry dr

380}

360F

D0 05 1.0 1.5 20 25 3.0 depth (pressure)
Cw, wt%
Karato (2011)
12.7.18 CPS, BEE
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Electrical conductivity depends strongly on water content=
(relatively weakly depends on T and other factors)

10
T=1500K
1 olivine
= garnet
wadsleyite
10"
=
A 2
. 107 F
o /
107
Alog,,fO,=+/-2
4
10} AMg# =+/-3
AT =+/-100K
10 -5 -4 ' 3 ' -2 " '
10 10 10 10 10 1
Cw, wt%

Karato (2011)
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Sensitivity of some geophysical
observables to water content

sensitivity to: resolution of geophysical
, observations
I  C (major) C (water) d
Seismic velocity O O A X O
Seismic discontinuity O ® A X O
Seismic Q O X e ) A
Seismic anisotropy A X @ AN ON
Electrical conductivity | /A A X

*: mostly for the upper mantle

Properties involving thermally activated processes are sensitive to water content.
Lab studies are more complete for electrical conductivity than for Q and LPO.
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opx
w

e

12.7.18

10° -
' T (K) [ T (K)
ol P=sGPa . | P=5 GPa 1800
i 1700
1600
| 107 | 1500
€ j
S~
\m/ 3
107"t o [
107
10° - :
10 10° 10
Cw(wt%)
10'3 -3 o o o . 2 2 = xl 2
10 10 10™
(o)
pyrolite (olivine+opx+pyrope), SIMS water calibration Cw (Wt %)
[Dai and Karato (2009)]
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()
G=GwadL1+ ] +¢J=aoawad
3

Ogar ' Owad ~1

o=0.65

RT

10°

- — —
Q o (S)
8 ) -

water content, wt%
o

1 0-4 i i i i
1500 1600 1700 1800 1900 2000

temperature, K
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Electrical conductivity and water in the mantle

Mineral physics model

......

Cw=1 wt%

depth.

100 200 300 400 500 600

km

o, S/m

Geophysical model

100

Karato (2011)
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200

300 400 500 600
depth, km
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(a) Mid-Ocean Ridge Continent T

MantleWedge
~0.01 Wt% G © Mid-Ocean Ridge Continent

Mantle Wedge
Transition Zone (FOZO? R
Lower Mantle (FOZO?)  ~0.1 wt%
<0.04 wt%
Mid-Ocean Ridge Continent

(b)

7 deWedge ~0.075 Wt% <0.04 Wt% core-mantle boundary

~0.01 wt% %

Karato (2011)

“Plum pudding” model is not consistent with observed electrical conductivity.
Inferred layered water distribution suggests mid-mantle melting.
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* Evidence for 410-km melting
— Low velocity layer
— Water content layeri P e e

- - 4
LVL LVL LVL not
Mid-Ocean Ridge Continent possible observed
B
/ . ™ \
. AN
Mantle\vedge » - " .".‘. T .' s o
~0.01 Wt \ ) e . .
‘ o o i— >
e M |
- .: = .v- f o b |
> ——
:
\\ d .
1 bt
L e
Lower Mantle ~0.1 wt% . 20 40 60 80 100
<0.04 wt% LVL thickness (km)

Karato (2011) Tauzin et al. (2010)
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(shallow)

(deep)

wads:leyite

@ @
B

water content

Karato (2011)

CPS, 7E[EE

* Partial melting (at 410km)
homogenizes the composition
of residual solids = water
content in the upper mantle is
constant = stabilizes the
degassing rate
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ridge
(partial melting)
water content

lithosphere

LAB
gabbro
(frozen wet melt,
~ 1 km thick)
asthenosphere
(~0.1 % melt, tube-like melt)
. ~300 km
low velocity layer
(~0.1 % melt, complete wetting)
melt-rich layer )
(~5-10 km thick) 410-km —
@Jartial meltingD

Karato (2011)
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daxoer 1 Xmantle _R= L( Xtotal _ yocean ) _R
T

dt T,

mantle
dX — 1} Xmam‘le + R

9[}("““” = xloal _ rlRl ocean mass 1s sensitive to regassing rate

dxocean  xM o xMIZ ocean (exosphere)

= + - R
dt 7 T2 A XMz xUM
BR . -
2 t

XUM UM
- + ﬁR +Y v upper mantle

dt
L -4, ‘T* g

* MTZ (+ lower mantle)

dXMTZ _ XMTZ (1 [)’)R Y

dt

S Xocean _ Xtotal _ §T1R _ CXZ |

Ty TH—T T T
with &= l—ﬁrz 1(1 B) and § = 2 T;
if & =2 -, 0, then §<1 Karato (2011)

—> ocean mass is less sensitive to regassing rate

Deep mantle melting buffers (stabilizes) the ocean mass.
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Water has strong effects on the melting
under the deep mantle conditions

e Addition of water reduces the solidus of the
lower mantle assembly by more than ~1500 K

* Addition of water changes the composition of
melts and the residual: highly ultramafic
melts + silica-rich residual

—> Geochemical evolution of Earth
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(c)

Temperature / °C

2400 12GPa
Pc+L
2100
Pc+Fo+L
1800 '
L L+V
CEn+L
1200 Fo+CEn+L ‘ v
Fo+V CEn+L+V
Mg2SiOa4

Inoue et al. (1994)

CPS, 7E[EE
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Melting occurs in the perovskite-rich system (+ water) at 25 GPa
and 1500 C (without water, one would need ~3000 C for melting).
Melt is (Mg,Fe)O rich =2 heavy melt. Residual solid is SiOz2 rich.
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Water distribution in the planetary interior can be mapped from
geophysical observations.

Electrical conductivity
highly sensitive to water content, insensitive to other variables

(seismological observations - insensitive to water, non-sensible
results)

Mantle water content in Earth’s mantle is layered.

— ~0.01 wt% for the upper mantle, ~0.1 wt% for the transition zone
- partial melting at 410-km?

Ocean mass may be buffered by the partial melting at 410-km

Melting could also occur below 660 km - (Mg,Fe)O-rich (dense)
melt.
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Plate tectonics (mode of mantle convection)

* Plate tectonics provides an efficient way to
circulate volatiles (= stabilizes the surface
ocean?).

* Plate tectonics is not an obvious mode of
mantle convection: Plates may be too strong
to be involved in convection (“stagnant lid”).

* Does plate tectonics occur in other terrestrial
planets (e.g., super-Earths)?




Modes of convection
(Influence of near-surface layer: T-effect, water effect)

plate tectonics

102§

108 —
A

106

10% -

no convection

stagnant-lid convection -

102 10° 10* 10° 10° 107 10°
Ra
Solomatov and Moresi (1997)
Classification using a two-parameter model
Plate tectonics occurs when the near surface layer is modestly strong (<200 MPa (for
Earth))

If the plate is too strong = “stagnant lid” convection
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Plate tectonics versus stagnant-lid
convection
 [driving force (gravitational energy release)] <=2
[resistance for convection (energy dissipation due to

deformation)] = [plate deformation] or [stagnant
lid (convection below the lid))]

strong plate =2 stagnant-lid convection

weak plate = plate tectonics
[critical strength ~100-200 MPa (for Earth)]



Is the lithosphere of Earth weak enough for
plate tectonics?

Differential Stress (MPa)

0 200 400 600 800
\\| T | I 0
_Q‘EEE‘ESS_A
Y - 200
OCEANIC ~
LITHOSPHERE L 400}33
3
- =
L c
p
N
B / ¢ =10 g
Dry Rheology -1 800
. a

Kohlstedt et al. (1995)

* For Earth, the simplest model
predicts too high strength for plate
tectonics

— “water” effects?
— shear localization (grain-size)?

* How about on other planets?



10

50

60

How to weaken the lithosphere?

Brittle €<—-> Ductile

Differential Stress (MPa)
0 200 400 600 800
[ T T ; T Y g
=3
 Diapase™ "=
{200 :
_ iIC g;
ITHOSPHERE L Je00d
% 3
n % o
1 C
4 a
N ) T I g
Dry Rheology - 800 5
a
H 1 ] 1

flow: Farla et al. (2012, submitted)

2000 = 2000
20-25°C Byerlee's u=05
18004 150 - 349°C Rule 1800
350 - 499°C
16004 500 - 625°C 1600
1400 | 1400
1200 1200
1000 1000
800 800
600 600
400 400
200 | 200
0 T T T T T T T 0
0.0 0.2 04 0.6 0.8 1.0 12 14 16

Confining Pressure (GPa)

friction: Chernak-Hirth (2010)

olivine:opx=75:25
1600
Strain rate: ~ 10" 5™
14001 Pressure: 1.3 - 2.0 GPa ".“W”L
1200+

1000+
800+

e olivine, 1200 C 1100°C

600+
400+

200+ 1200°C

0 02 04 06 08 1 12

Shear strain (y )

14

Weakening in the brittle regime is limited, but weakening in the ductile regime can be large.
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How about other planets?

e Size (mass)
* Water
e Surface temperature

How do these factors affect [driving force] and
[resistance for plate subduction] in other planets?

— Basics of convection (boundary layer theory)
—> Strength of plates

12.7.18 CPS, 7B
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A boundary layer model of convection

When the fluid layer is highly unstable, the temperature-gradient and

deformation are localized in thin “boundary layers”.

Temperature

12.7.18 CPS, JEEE

Ra = apgL’ AT

nK

Ra/(Ra),

82
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Fdrive = hAT - pag
F . =ndv.p-v
resist n 0x n L/2

F

resist

2
= Fdrive 9 h= LATT?;))ag (1)

now, plate thickness (h) is determined by plate cooling

> h=2Jkt =2JkL/v (2)

eliminating v from (1) and (2),

(3)
RCl _ apgl;jAT
! (4)
heat flux
J=k&F=J,Nu (J,=kAL) (Nu: Nusselt number)
> Nu=L=1Rg (5)
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3
__ apgL AT
Ra ==

* |f viscosity is not strongly dependent on
planetary mass, Ra increases with planetary
mass.

— large planet = large driving force + thin plate
—> easy for plate tectonics to operate

e But viscosity (average viscosity) may strongly depend on
planetary size---- .

* Also plate strength may depend on “other parameters”.
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* Both the driving force and the resistant to
plate deformation depends on Rayleigh
number + strength (plate strength, mantle
viscosity)

* Both Rayleigh number and strength depend
on planetary size + something else.

* Something else

— water (e.g., Regenauer-Lieb (2006), Korenaga
(2010))

— grain-size [surface temperature] (e.g., Landuyt-
Bercovici (2009), Foley-Bercovici (2012))



20 1 I 1 1 I 1 I I
200

L
’é\ 100}m Mars Venus 2
£ 100 15| (u=0.7, E=300, AT,=1350)
~ 50 g
(p] Earth prl
8 Q—J —~
(- (%)) B A === ————

RN e el
% 0= = N (1207, E=300, AT,=1700) |
e towards CD g
- 10+ gaseous (¢)) :—'
= - planets (D <
q) 5 - - > — \6 5 -------------------------------------------
Q o g e e e raen
®© 14 % S \(u—07 E=200, AT,= 1700)
a8 super-Earths E’,
0.1Mg Mg 3Mg 10Mg 20Mg, L) ST gt hd |
Mass ¥ plate tectonics
(1=0.03, E=300, AT,=1350) 1
_5 1 1 1 1 1 1 1 1

1 2 3 4 5 6 7 8 9 10
Valencia-O’Connell (2007): M/Mg

Planetary mass is most important o o
> large mass = high Rayleigh number Korenaga (2010) : friction coefficient

> large driving force + thin plate (strength of lithosphere) is most important,
the planetary mass is NOT important
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800 I .

Venus
3 700 © |
Q
% 600 r .
g Stagnant Lid
e 500 f Regime ]
2 Plate Tectonic
Q400 | Regime
I
S
® 300 Super-Earth? 1
200 I!Mars | | |
0.5 1 1.5 2 2.5

Planet Radius [Earth Radii]

Foley-Bercovici (2012):
Plate strength is controlled by grain-size reduction. Driving force increases with planet size.
Grain-size reduction depends on (near surface) temperature through grain-growth.
Both planet size and surface temperature are important.

12.7.18 CPS, JEEE
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Limitations of the previous studies

* For the driving force, pressure dependence of
viscosity has been ignored in all previous studies
(mass =2 P, large effects).

* For the resistance force, conditions for plate
failure (deformation) are not well understood

(essence of mineral physics of strength reduction has
not been incorporated in the previous large-scale

models).




Doesn’t planetary size matter? (1)

Earrth Venus

o = g 5 depth (km)
= c
: = S = 9 Earth Venus  Mars
— 100
) = —1 60, 66
dry) solidus /
(dry) —{ 20
& 3 |— —1 90,100
O
g
>
a —1 300
L 4 - —1120, 132
a
— 400
5 |— —1 150, 165
adiabat
| | | | —{180,200 — 500
1200 1400 1600 1800

temperature, °C

Planetary size (mass) changes plate thickness (small planet = thick plate).

Lithosphere thickness determined by dehydration-hardening (Karato (1986), Hirth-Kohlstedt (1996))
depends on planetary size (due to gravity): lithosphere will be thicker for a smaller planet



Doesn’t planetary size matter? (2)

Planetary size could change the driving force
through the P-dependence of viscosity

Rayleigh number (partly) controls the plate thickness and
vigor of convection

Rayleigh number depends on viscosity
Viscosity changes with T and P (and water content ---)

— But P-effect was ignored---.

~ pagATL’
Ra = (T, P)x




Viscosity of planetary materials depends strongly on T and P.
P-effect is potentially very large!

n="mo eXP( e )— Mo eXP(g_;)

10°

107 - *-200 kJ/mol . 107

10° | - 10"

nm,

10% |- - 10"

H*=400 kJ/mo

m,

10° L 4

107 \ \ \ \ \ 107

2000 2500 3000 3500 4000 4500 5000

-

1078

o

temperature, K

pressure, GPa
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Internal structure of a super-Earth

5000

0.024TPa 4000 -

temperature

0.12TPa 3000 |

~0.5TPa

temperature, K

2000

—_

pressure

~1TPa

1000 -

o
)

Q)
Al
I—
)
—
S
®
%)
()
—
oY

93

| | | | | 0
6000 7000 8000 9000 10000 11000
radius, km

At high P (~1 TPa)
(1) B1-> B2 transition

(2) Mechanism change of diffusion
Pto~1TPa (1000 GPa) (3) dissociation of post-perovskite
T to ~5000 K (4) metallization?
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nm,

1036
10%
10%
1027
1024
10%
1018
10"
1012

10—12
10—15
10—18

Viscosity of solids increases with P at low P.
Is this valid at higher P in super-Earths?

P-effect

V*=3 cc/mol

2 cc/mol

viscosity

o

pressure, GPa

Karato (2011)
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.
%,
I 3}6
N
(~0.5TPa) (~1TPa)
depth (pressure)
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Viscosity-mass relationship
(T-viscosity interaction (self-regulation): Tozer effect)

M - Heat = A - Nu - k(T;TS) (energy balance < T-n feedback)

3 0\P

2-48+2yB (2-4B+2yB) - 2.8V

ST M 3(1+B+6pB) and 1 o< M_ 3(1+B8+6pB) 3V ~ M_

W
W
>

-> Pressure dependence of viscosity will change the n-M relation
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neT PV
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Karato (2011)
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How to weaken the lithosphere?
Brittle <> Ductile

Differential Stress (MPa)

0 400 600 800
T

0
Oy =2¢

I I | o
700
Do o* GA248
10 600 ¢ (1000°C)
% 1% g 500
% =
; S GA265
T 20| IC 3! @ 400 (1100°C)
£ THOSPHERE % =
= v 1*°8 B0 By0O
< 3 T 00 S Aovdh
Q. 30 = .-_ 9’. 8 _-' ________
3 200 S LpmNa
A Y 5 5 GA267 (1200°C) ((34\227501@
3 100 - -~ g4
ivi - 6007 ' T T Ha12 GA270
or Olivine ) o o T ey
00 02 04 06 08 10 12 14 16 18 20
50 | -~ £ =10"" s Shear strain, y
Dry Rheology -1800
60 ! 1 1 ] d .
Farla et al. (2012, submitted)

Weakening in the brittle regime is limited, but weakening in the ductile regime can be large.
Weakening in the ductile regime depends on T and water content.
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Conclusions

* In order to assess if Plate Tectonics occurs on other planets
(e.g., super-Earths), we need to know what controls the
magnitude of driving force and the resistance for plate
deformation.

* Major remaining issues:
Physical mechanisms of localized deformation
Dependence of viscosity on pressure (phase transformations)



Summary

* Volatile acquisition during planetary formation

* early or late acquisition? (= H in the core?)
e geochemical observations

* liquid phases control volatile acquisition
e volatility €2 affinity to liquids (to Fe etc.)
* Volatile circulation in a planet
(longevity of the surface ocean)
* The role of deep (mid-) mantle melting
* Plate tectonics on other planets?
* “rheological properties”

® shear localization, deep mantle viscosity




Viscosity changes also with crystal structure/

chemical bonding.

10?2

1073

o/n

104

normalize viscosity

10°°

12.7.18

normalized temperature

T/Tm
0.9 0.8 0.7

Bl

1 1 1 1 1 1 1
11 12 13 14 15 16 1.7

Tm/T

In most of super-Earth’s mantle, MgO

is the softest phase.

MgO changes its structure from B1 to

B2 at ~0.5 TPa. B2 structure is softer than
B1 structure.

(modified from Karato (1989))
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