Violent Universe Explored by Japanese X-ray Satellites

Hideyo Kunieda Nagoya University

Asia Academic Seminar CPS 8th International School of Planetary Science September 30, 2011 at Awaji

Lecture Plan

September 30, 9:00-10:15

I. Basic processes in High energy astronomy I-1: Why X-ray astronomy? I-2: Emission mechanisms I-3: Energy sources II. High energy phenomena II-1: Stellar X-ray emission

September 30, 10:45-12:00

II-2: Supernova remnants (SNR)
II-3: Neutron stars and blackholes
II-4: Active Galactic Nuclei
II-5: Cluster of galaxies and Cosmology

I-1. Why X-ray astronomy?

1. Sunhttp://swc.nict.go.jp/sunspot/Photosphere : Black body radiation $T = 6430^{\circ}K \rightarrow \lambda_{peak} \sim 4500 \text{ A}$ Wien's law $\lambda T = 2800 \text{ micron } K$ Density $\sim 10^{14} \text{ atom/cc } (10^{-6} \text{ g/cc})$

Corona : Thin thermal emission + lines $T = 10^6 \circ K \rightarrow \lambda_{peak} \sim 30 \text{ A (if BB)}$ Density $\sim 10^{6-8}$ atom/cc

http://hinode.nao.ac.jp/latest/

http://hinode.nao.ac.jp/latest/

I-1. Why X-ray astronomy?

2. Cluster of Galaxies

Optical image : Component galaxies
Emission from stars
Visible mass ~ M**X-ray image** : Hot plasma
 $T ~ 10^{7-8}$ KV
Cl**V**
Plasma mass ~ 1-5 MCl

Mass to bind hot gas in clusters **Dark matter** Mass ~ 5-20 M

Optical Image Virgo X-ray Image by Cluster **ASCA**

Radiation and related physical processes

Radio $\lambda = 0.1 - 100 \text{ mm}$ Molecular emission Vibration, rotation Infrared $\lambda = 1-100 \text{ micron}$

> Dust emission Low temp. stars

Optical **λ=**4000-7000Å

Main sequence stars

FM Radio frequency 80.7 MHz $\lambda = 3 \times 10^{10} \text{ cm}/8.07 \times 10^7$ = 4 x 10² cm

Black body radiation $37^{\circ}C \implies 310^{\circ}K$ ~ 9 micron H Ly-α 1215Å

Ly limit 912Å H Ba-α (H-α) 6562Å

T= 6430°K $\rightarrow \lambda_{peak} \sim 4500$ A (H Ba-α (H-α) 656 Absorption & emission lines from excited atoms

Radiation and related physical processes

Ultra-violet λ= 100-4000Å Early type stars(<7000°K) Emission lines

X-rays λ = 1-100 Å Plasma temp. 10⁵⁻⁸ K Emission lines (transition between levels)

Gamma rays λ< 1Å Nuclear transition High energy particles Binding energy (Outer most electron) H (13.6 eV), He (24.6 eV), Li (5.4eV), Be(9.3eV)

Binding energy (Inner most electron) C(280eV), O(550eV) Ar(3.1keV), Fe(7.1keV)

Synchrotron rad. Compton rad.

Narrow window at Visible light

X-rays are observable from out side atmosphere

X-ray Telescope

Japanese X-ray Satellites

1. Black body radiation

Thermometry of steel furnaces based on the radiation

 $E(v) dv = 2 Z(v)kT dv \qquad Z(v): lattice points in phase space$ (1) Long wave side : Rayleigh-Jeans distribution

$$4 \pi L^{3}$$

$$Z(v) dv = -----v^{2} dv$$

$$C^{3}$$

$$E(v) dv = 8 \pi kT$$

$$U(v) dv = ----v^{2} dv$$

$$L^{3}$$

$$C^{3}$$

When $v \rightarrow small$, it well represents observed spectra but when v is large, U will become infinity.

1. Black body radiation

(2) Short Wave side : Wien distribution

$$4 \pi L^{3}$$

$$Z(v) dv = \frac{4 \pi L^{3}}{C^{3}} v^{2} \exp(-h v / kT) dv$$

$$C^{3} = \frac{2 Z(v) hv dv}{C^{3}} = \frac{8 \pi h}{c^{3}} v^{3} \exp(-h v / kT) dv$$

When h v /kT >>1, it well represents observed spectra but does not match with the data when h v /kT <<1

1. Black body radiation

(3) Interpolation : Planck distribution $8\pi h$ $U(v) = -----v^3 dv$ Planck distribution $c^3 = \exp(h v / kT) - 1$ When h v /kT <<1, exp(- h v /kT) =1 + h v /kT $8\pi kT$ $U(v) dv = \dots v^2 dv$ Rayleigh-Jeans **c**³ When h v /kT >>1, $\exp(h v /kT) >>1$ $8\pi kT$ $U(v) dv = \cdots v^{3} exp(-hv/kT) dv$ Wein c^3

1. Black body radiation Peak frequency : derivative of Planck's eq. = 0 $U(v) = \frac{8 \pi h}{c^3} \frac{1}{\exp(h v / kT) - 1}$ Planck distribution **X**³ **f** (**x**) = ----when x = hv/kTe^x –1 $\frac{\partial f}{\partial x} = \frac{3x^2(e^x - 1) - x^3 e^x}{(e^x - 1)^2} = 0$ $3(1-e^x) = x$ left term = 0(x=0), =1.8(x=1), =2.4(x=2), =3(x= ∞) x=2.812 hvmax=2.82 kT $\lambda \max T = 2900(\mu m \cdot K)$ Wien's law

1. Black body radiation

Total brightness : Integration of Planck's eq. $\mathbf{B}(\mathbf{v}) = \frac{\mathbf{U}(\mathbf{v}) \mathbf{c}}{4} - \mathbf{v}$ $\int \mathbf{B}(\mathbf{v}) \mathbf{d} \, \mathbf{v} = \frac{2 \,\pi \,\mathbf{h}}{\mathbf{c}^2} \quad \int \frac{1}{\exp(\mathbf{h} \,\mathbf{v} \,/\mathbf{kT}) - 1} \,\mathbf{v}^3 \,\mathbf{d} \,\mathbf{v}$ When x = hv/kT $\mathbf{B} = \frac{2\mathbf{h}}{\mathbf{c}^2} (\frac{\mathbf{k}\mathbf{T}}{\mathbf{h}})^4 \int \frac{\mathbf{x}^3}{\mathbf{e}^{\mathbf{x}} - 1} d\mathbf{x} \rightarrow = \frac{\pi^4}{15}$ $= \frac{2 \pi^{5} k^{4}}{15 c^{2} h^{3}} T^{4} = \sigma T^{4}$ $\sigma = 5.67 \times 10^{-5} \text{ erg cm}^{-2} \text{ deg}^{-4} \text{ s}^{-1}$: Stefan-Boltzmann constant

2. Line emission and absorption

Absorption by Fe atom

II-2: Emission mechanisms 2. Line emission and absorption Absorption by Fe atom section Absorption edge $E > E_{K} = 7.11$ CTOSS $E_{K\beta} = E_M - E_K$ e'ρ (cm² g⁻¹) = 7.06 ke ∞E^{-3} Absorption $E_{K\alpha} = E_{L} - E_{K}$ = 6.40 ke Absorptior If outer ele E_K X-ray energy 10 0.1 1.0 PHOTON ENERGY (keV)

Emission from hot plasmas

Ionization state

Electron collision/Photo ionization Free electrons Recombination Equilibrium

Lines from ionized ions

Binding energy increases after the removal of outer electronsFe XVII(16 electrons are removed) Fe Kα X-ray ~6.4 keVFe XVIII -XXV~6.7 keVFe XXVI~6.9 keV

Line energy>	Ionization state		
Line ratio of an element>			
	Tion, Te (Balance of ionization/recomb.)		
Line ratio>	Atomic abundance		

Koyama et al, 2007: Publ. Astron. Soc. Japan, 59, 245

Emission from hot plasmas

3. Bremsstrahlung

3. Bremsstrahlung

When $d\Omega = \sin\theta \, d\theta \, d\psi$ $\frac{dW}{dW} = \frac{e^2}{e^2} \cdot \frac{1}{(v(t))^2}$ $\frac{dW}{dt} = \frac{e^2 v^2 (t)}{6 \pi \epsilon_0 c^3} \int d\Omega \frac{\sin \theta}{16 \pi^2 \epsilon_0 c} \int d\Omega \frac{\sin \theta}{(1 - v(t) \cos \theta / c)^5}$

When $\beta = v/c \rightarrow 1$

Isotropic in the rest frame

 \rightarrow Lorentz transformation \rightarrow Beaming

$$\gamma = \frac{1}{\sqrt{(1 - v^2/c^2)}}$$

3. Bremsstrahlung

Lorentz transformation

x' = γ (x-vt) y' = y z' = z t' = γ (t-vx/c²) x = γ (x' +vt) y=y' z=z' t = γ (t-vx/c²)

$$\gamma = \frac{1}{\sqrt{(1 - v^2/c^2)}}$$

3. Bremsstrahlung

Measured in the moving system Velocity u', direction θ ',

Parallel component to v is affected by the motion v $u_{\parallel}' + v$ u_{\perp}' $u_{\parallel} = \frac{u_{\parallel}' + v_{\parallel}}{1 + vu_{\parallel}' / c^2}$ $u_{\perp} = \frac{u_{\perp}'}{\gamma (1 + vu_{\parallel}' / c^2)}$

In the moving system, light direction is θ is changed to θ

$$\sin \theta = -\frac{U}{c} = \frac{c \sin \theta}{c \gamma (1 + v \cos \theta / c)}$$

Here, u'=c, u_{||} = c cos θ , u = c sin θ
If $\theta = \pi/2$, sin $\theta = 1/\gamma$

3. Bremsstrahlung

3. Bremsstrahlung

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 160

II-2: Emission mechanisms 3. Bremsstrahlung Thermal bremsstralung e V **Thermal distribution of electrons** $dP \propto \exp(-E/kT) d^3v = \exp(-mv^2/2kT) d^3v$ **b**ⁱ R $\begin{array}{ccc} & & dW(v,\omega) \\ & \int & ---- v^2 \exp(-mv^2/2kT) \, dv \\ v_{min} & d\omega dV dt \end{array}$ Ze dW dVdtdω ∞ $\int_{\Omega} v^2 \exp(-mv^2/2kT) \, dv$ $d\omega = 2\pi dv$ $\frac{dW}{dW} = \frac{2\pi}{(-----)} \frac{2^5 \pi e^6}{1^{1/2} - -----T^{1/2} Z^2 n_e n_i} e^{-h\nu/kT} g$ (eq. 5.14a)dV dt dv 3km 3mc³ $\frac{dW}{dW} = \frac{2 \pi kT}{(-----)^{1/2}} \frac{2^5 \pi e^6}{-----Z^2 n_e n_i g}$ (eq. 5.15a) 3m 3hmc³ dV dt George B. Rybicki, Alan P. Lightman, 1979: Radiative

Processes in Astrophysics, Wiley-VC, 160-161

Emission from hot plasmas

Koyama et al, 2007: Publ. Astron. Soc. Japan, 59, 245

Thermal radiation from SNR

4. Synchrotron radiation

 $U_B = B^2 / 8 \pi$: Energy density of B

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 169

4. Synchrotron radiation

If energy spectrum of electrons is power law, N(γ) d γ = C₂ γ -P d γ

 $P_{tot}(\omega) \propto \omega^{-(p-1)/2} \int F(x) x^{(p-3)/2} dx$ (eq. 6. 22a)

5. Compton scattering

$$\frac{d \sigma_{T}}{d \Omega} = \frac{1}{2} r_{o}^{2} (1 + \cos^{2} \theta)$$

$$\frac{\delta \pi}{\sigma_{T}} = \frac{8 \pi}{3} r_{o}^{2}$$

In relativistic cases, ϵ ϵ $--=1 + -----(1 - \cos \theta)$ ϵ_1 mc^2

 $\frac{d\sigma}{d\Omega} = \frac{r_o^2 \varepsilon_1^2}{2 \varepsilon^2} \left(\frac{\varepsilon}{\varepsilon_1} + \frac{\varepsilon_1}{\varepsilon} - \sin^2 \theta \right)$

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 197

Radiation Processes

Line emissions

Thermal Bremsstrahlung -----> Blackbody radiation

 $\frac{dW}{dV dt} = \frac{2 \pi kT}{3m} \frac{2^5 \pi e^6}{3hmc^3} Z^2 n_e n_i g \qquad (eq. 5.15a)$

Synchrotron

$$P = \frac{4}{3} \sigma_{Th} c \beta^2 \gamma^2 U_B \quad (eq. 6. 7b)$$

Inverse Compton

$$P = \frac{4}{3} \sigma_{T} c \gamma^{2} \beta^{2} U_{PH}$$

George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VC, 161

II-2: Emission mechanisms of high energy photons

Synchrotron-self-Compton Model for a Blazer

II-2: Emission mechanisms of high energy photons

Non-thermal component of SNR

I-3: Energy sources of high energy phenomena

Energy release of X-ray sources

Sun	$L_{opt} \sim 10^{33} \text{ erg/s}$	Nuclear fusion
	$L_{X} \sim 10^{27} \text{ erg/s}$	
SN	$E \sim 10^{51} \text{ erg}$	Gravitational Energy
AGN	L~10 ⁴¹⁻⁴⁷ erg/sec	Gravitational Energy
Cluster	$E \sim 10^{60} \text{erg}$	Dynamical+G Energy
γ burst	$E \sim 10^{52} \text{ erg/sec}$	Hypernovae?

1. Nuclear energy

Energy release of the Sun

--> Black body radiation $kT=6430^{\circ}K$, r = 600,000 km, $\sigma = 5.67 \times 10^{-5}$

L = $4\pi r^2 \sigma T^4$ = 4.4 x 10³³ erg/s

SUN

 $t = 3600 \text{ s/h x } 24 \text{ h/d x } 365 \text{ d/y x } 46 \text{ x } 10^8 \text{ y}$ = 1.45 x 10¹⁷ sec (3.15 x 10⁷ sec/y)

 $E = L x t = 6 x 10^{50} erg$

1. Nuclear energy

Nuclear reactions

P-P chain (I) $p+p \rightarrow {}^{2}H + e^{+} + \underline{\nu}_{e}0.16MeV$ ${}^{2}H + p \rightarrow {}^{3}He + \gamma$ [6.7MeV/3H] for kT > 8 10⁶K ${}^{3}He + {}^{3}He \rightarrow {}^{4}He + 2p$ [26.1MeV/4H] (II) kT > 2 10⁷K \wr $\checkmark {}^{2} \checkmark {}^{2} \checkmark {}^{2}$ ${}^{3}He + {}^{4}He \rightarrow {}^{7}Be + \gamma$ ${}^{7}Be + p \rightarrow {}^{8}B + \gamma$ ${}^{8}B \rightarrow {}^{8}Be + e^{+} \underline{\nu}_{e} 7 MeV$ Solar neutrino ${}^{8}Be \rightarrow 2{}^{4}He$

CNO cycle He burning C O burning---> Fe

2. Gravitational energy

 $E=GM^2/R$

 $\sim Mc^2$

Escape velocityAt Rg,
$$v_{es} = c$$
 $v_{es}^2 = 2GM/R$ Then $Rg = 2GM/c^2$ $= 3 (M/M_{solar}) km$

II. High energy phenomena II-1 : Stellar X-ray emission

1. Stellar X-ray emission

(1) Evolution and X-ray emission from proto-stars

Contraction of molecular cloud

Release of angular Momentum

- Class O Accretion disk
 - I Bipolar flow
 - X-rays emission discovered by ASCA
 - II Central star
 - III Central star (Nuclear reaction)

Gravitational E --> Heating --> Rotation --> B -->Hot plasmas High energy electrons Hard X-rays

Star forming region ρ Oph Molecular Cloud

Optical (Digitized sky survey)

Radio (¹³CO) (NANTEN telescope)

X-ray blinking of proto stars in SFR

(2) Solar X-rays

Main sequence stars

Core Temp. and Density --> Ignition of Nuclear reaction Photo-sphere: T ~ 6000°K Blackbody Corona: T ~ 10^{6-7} K --> several keV --> X-rays

Nuclear energy --> Convection/Rotation --> B

Solar magnetic field --> Extends into the atmosphere

Soft X-ray Movie of the Sun by Yohkoh

http://www.isas.jaxa.jp/home/solar/yohkoh/

Solar Flare observed by Yohkoh

Hard Soft

References

- George B. Rybicki, Alan P. Lightman, 1979: Radiative Processes in Astrophysics, Wiley-VCH, 158,160-161,169,173-174,197
- John D. Kraus, 1986: Radio Astronomy, Cygnus-Quasar Books ,81
- Koyama et al, 2007: Discoveries of Diffuse Iron Line Sources from the Sgr B Region, Publ. Astron. Soc. Japan, 59, 221
- Koyama et al, 2007: Iron and Nickel Line Diagnostic for the Garactic Center Diffuse Emission, Publ. Astron. Soc. Japan, 59, 245
- Koyama, 2006: New X-ray view of the Galactic Center observed with Suzaku, Journal of Physics ; Conference Series, 54, 95
- Macomb, D, J, 1995: Multiwavelength Observatons of Markarian 421 During a TeV/X-Ray Flare The AstroPhysical Journal, 449,99

References

- Sun optical image http://swc.nict.go.jp/sunspot/
- Sun X-ray Image http://hinode.nao.ac.jp/latest/
- 名古屋大学Ux研@研究プロジェクト (Cassiopeia A) http://www.u.phys.nagoya-u.ac.jp/r_e/r_e3_4.html
- ようこう

http://www.isas.jaxa.jp/home/solar/yohkoh/

References

- <u>http://www.u.phys.nagoya-u.ac.jp/r e/r e3 4.html</u>
- Furuzawa et al., 2009, Doppler-Broadened Iron X-Ray Lines From Tycho's Supernova Remnant : ApJ...693L..
- Hayato et al., 2010, Expansion Velocity of Ejecta in Tycho's Supernova Remnant Measured by Doppler Broadened X-ray Line Emission : ApJ...725..894H
- Ishihara et al., 2010, Origin of the dust emission from Tycho's SNR : A&A...521L..611
- http://www.astro.isas.ac.jp/xjapan/asca/3/agn/
- "James N, Reeves et al, 2007, Revealing the High Energy Emission from theObscyred seyfert Galaxy MCG-5-23-16 with Suzaku, Publ. Astron. Soc.Japan, 59, 301"
- Fabian et al, 1989, X-ray fluorescence from the inner disc in Cygnus:X-1, Mon. Not. R. astr. Soc, 238, 729
- Tanaka et al, 1995, Gravitationally redshifted emission implying an accretion disc and massive black hole in the active galaxy MCG-6-30-15,Natur., 375, 659
- Miniutti et al, 2007, The Long Suzaku Observation of MCG-6-30-15, Progress of Theoretical Physics Supplement, 169, 260
- Koyama et al., 2007: Iron and Nickel Line Diagnostic for the Garactic Center Diffuse emission, Publ. Astron. Soc. Japan, 59, 245
- Murakami et al, 2003, Reflected X-ray Emissions on Molecular Clouds -Evidence of the Past Actives of Sgr A*, Astron. Nachr, 324, 125
- Koyama et al., 2008: A time-Variable X-Ray Echo; Indication of past Flare of Garactic-Center Black Hole, Publ. Astron. Soc. Japan, 60, 201
- Shibata et al., 2001, Temperature Map of the Virgo Cluster of Galaxies Observed with ASCA: *ApJ*... **549...**228
- Ezawa et al., 1997, Discovery of a Large-Scale Abundance Gradient in the Cluster of Galaxies AWM 7 with ASCA: ApJ...490L..33E
- Lubin et al., 1996, The Baryon Fraction and Velocity--Temperature Relation in Galaxy Clusters : Models versus Observations : ApJ...460...10