Mechanisms of Jet Formation on the Giant Planets

Tapio Schneider and Junjun Liu California Institute of Technology

Jupiter zonal wind

(Porco et al. 2003)

(Porco et al. 2003)

Jupiter zonal wind

(Porco et al. 2003)

Zonal wind on all giant planets

(Porco et al. 2003; Sanchez-Lavega et al. 2001; Hammel et al. 2001; Sromovsky et al. 2001)

Energy budget of giant planets

- Emit more energy than they receive from the sun
- Internal heat flux can generate convection
- Differential solar radiative heating from above

	Absorbed insolation	Internal heat flux
Jupiter	8.1 Wm ⁻²	5.7 Wm ⁻²
Saturn	2.7 Wm ⁻²	2.0 Wm ⁻²
Uranus	0.7 Wm ⁻²	0.04 Wm ⁻²
Neptune	0.3 Wm ⁻²	0.4 Wm ⁻²

⁽Guillot 2005)

Giant planet properties

- Have similar radii and rotation rates
- Differ in energy budgets
- Very different flows:
 - Jupiter, Saturn superrotating
 - Uranus, Neptune subrotating

Differences in flows likely caused by differences in energy budgets

Deep-flow models

(Busse, 1983)

- Rotating Rayleigh-Benard convection
- Surface zonal winds extend along cylinders through insulating layer (Busse 1976)
- But strength of deep winds constrained by Ohmic dissipation (Liu et al. 2008)

Zonal wind in deep-flow model

Implies excessive heat flux (viscous dissipation) and are ruled out by AM balance

AM flux (per unit volume) is barotropic in deep-flow models

 $\nabla\cdot(\overline{\widetilde{\rho}u'\mathbf{u}'})$

(Kaspi et al. 2009)

Shallow-flow models

- Shallow-water layer on rotating sphere
- Driven by small-scale forcing (convection) or largescale mass/volume source (insolation gradient)
- Generation of extratropical jets by inverse cascade

Zonal wind in shallow model

- Usually does not reproduce equatorial superrotation
- Ignores baroclinicity/stratification

(Scott and Polvani 2007)

Hide's theorem and superrotation

If there is any (radial) viscous dissipation of angular momentum,

$$\frac{DM}{Dt} = \frac{\partial}{\partial r} \nu \frac{\partial M}{\partial r},$$

with $M = (a\Omega \cos \phi + u)a \cos \phi$, interior extrema of angular momentum are impossible in steady flow.

Therefore, $u \leq \Omega a \sin^2 \phi / \cos \phi$.

(Hide 1969; Schneider 1977)

Eddy angular momentum flux on Jupiter

(Salyk et al. 2006)

Scales of waves on Jupiter

• Gravity wave speed: $c \approx 450 \,\mathrm{m\,s}^{-1}$

(Ingersoll & Kanamori 1995)

- Midlatitude Rossby radius: $c/f \sim 2000 \, {\rm km}$
- Equatorial Rossby radius: $\sqrt{c/\beta} \sim 10,000 \, \mathrm{km} \sim 8^{\circ}$

Generation of equatorial waves by convection

Thermodynamic balance in equatorial region (Charney 1963):

$$\partial_t \mathbf{v} + \mathbf{v} \cdot \nabla_h b + N^2 w = Q$$

Sufficiently strong convective heating leads to divergence:

$$\nabla_h \cdot \mathbf{v}_{\chi} = -\partial_z w = -\partial_z (Q/N^2)$$

Divergence is source of rotational flow (Sardeshmukh & Hoskins 1988):

$$(\partial_t + \mathbf{v}_{\Psi} \cdot \nabla_h)\zeta_a = -\nabla_h \cdot (\zeta_a \mathbf{v}_{\chi})$$

Convective heating at weak stratification generates Rossby waves that propagate out of equatorial waveguide

Giant planet GCM

- Ideal-gas atmosphere in thin shell with Jovian rotation rate, gravitational acceleration, gas constant, etc.
- Scattering gray radiative transfer with diffuse insolation
- Quasi-equilibrium dry convection scheme
- Exponential SGS filter in horizontal
- Up to T213 horizontal resolution, 30 vertical levels
- Imposed *uniform* heat flux at lower boundary
- Rayleigh drag at artificial lower boundary at 3 bar

Mean meridional circulations on Jupiter

(Schneider & Liu 2009)

Modeling of deep MHD drag in thin shell

Model momentum dissipation as Rayleigh drag

 $\partial_t \mathbf{v} \cdots = -r \mathbf{v}$

(Liu et al. 2008)

Simulated zonal wind in upper troposphere

2010年1月29日金曜日

Divergence (Jupiter upper troposphere)

(Schneider & Liu 2009)

Rossby wave source (Jupiter troposphere)

(Schneider & Liu 2009)

2010年1月29日金曜日

Temperature: Comparison with observations

2010年1月29日金曜日

Why are Jupiter and Saturn superrotating?

--- strong internal heat flux (5.7 W m⁻² on Jupiter and 2.01 W m⁻² on Saturn) generates convection.

Zonal velocity in Jupiter simulation (100 Earth days)

Vorticity in Jupiter simulation (100 Earth days)

(Schneider & Liu 2009)

Jupiter control simulations

Why is Saturn's equatorial jet stronger and wider than Jupiter's?

• Width of the equatorial jet is set by the equatorial Rossby radius:

$$L = \sqrt{c/\beta}$$

$$c = \int_{p_t}^{p_s} N_p \, dp$$
$$N_p^2 = -(\bar{\rho}\bar{\theta})^{-1} \,\overline{\partial_p \theta}$$

• By vorticity mixing argument, strength of the equatorial jet increases with width:

$$U \sim L^2 \beta / 2 \sim c/2$$

(Schneider & Liu 2009)

Why is Uranus subrotating?

--- Almost no internal heat flux (0.042 W m⁻²), the atmosphere is stably stratified.

How about Neptune?

--- Has significant internal heat flux (0.43 W m⁻²), the atmosphere is neutrally stratified below tropopause.

RMS Rossby wave source in Jupiter and Neptune simulations

• Jupiter's vertically integrated Rossby wave source is an order of magnitude larger than Neptune's.

Neptune control simulation

(a) Neptune's insolation and Saturn's internal heat flux 2.01 W m⁻²
(b) Uniform insolation and Neptune's internal heat flux 0.43 W m⁻²

Instantaneous zonal wind and relative vorticity

Vorticity in Jupiter simulation (north pole)

Polar jets and waves

Velocity variance spectra (Jupiter simulation)

2010年1月29日金曜日

Eddy length scales (Jupiter simulation)

EKE spectrum and flux (Jupiter simulation)

Conclusions

- Off-equatorial jets are baroclinically generated; equatorial superrotation generated by convection
- Internal heat flux destabilizes deep layer and increases baroclinicity
- Convection generates equatorial divergence and Rossby waves, leading to superrotation
- Momentum dissipation by coupling to magnetic field at depth
- Strength/scale of jets depends on strength of drag
- No inverse energy cascade necessary

Zonal velocity in Jupiter simulation (100 Earth days)

references (I)

- Busse, F. (1976). "A simple model of convection in the Jovian atmosphere". Icarus, 29 pp.255-260.
- Busse, F. (1983). "A model of mean zonal flows in the major planets". Geophysical and Astrophysical Fluid Dynamics, 23 pp. 153-174.
- Charney, J. G. (1963). "A Note on Large-Scale Motions in the Tropics". Journal of the Atmospheric Sciences, 20 pp.607-609.
- Fletcher, L., P. Irwin, N. Teanby, G. Orton, P. Parrish, R. de Kok, C. Howett, S. Calcutt, N. Bowles, and F. Taylor (2007). "Characterising Saturn's vertical temperature structure from Cassini/CIRS". Icarus, 189 (2) pp.457-478.
- Guillot, T. (2005). "The interiors of giant planets: Models and outstanding questions". Annual Review of Earth and Planetary Sciences, 33 pp.493-530.
- Hammel, H., K. Rages, G. Lockwood, E. Karkoschka, and I. de Pater (2001). "New measurements of the winds of Uranus". Icarus, 153(2) pp.229-235.
- Heimpel, M., J. Aurnou, and J. Wicht (2005). "Simulation of equatorial and high-latitude jets on Jupiter in a deep convection model". Nature, 438 pp. 193-196.
- Hide, R. (1969). "Dynamics of the atmospheres of the major planets with an appendix on the viscous boundary layer at the rigid bounding surface of an electrically-conducting rotating fluid in the presence of a magnetic field". Journal of the Atmospheric Sciences, 26(5) pp.841-853.
- Ingersoll, A. and H. Kanamori (1995). "Waves from the collisions of comet Shoemaker-Levy 9 with Jupiter". Nature, 374(6524) pp.706-708.

reference (2)

- Kaspi, Y., G. Flierl, and A. Showman (2009). "The deep wind structure of the giant planets: Results from an anelastic general circulation model". Icarus, 202 pp.525-542.
- Liu, J.J., P. Goldreich, and D. Stevenson (2008). "Constraints on deep-seated zonal winds inside Jupiter and Saturn". Icarus, 196(2) pp.653-664.
- Liu, J.J. and T. Schneider (2009). "Mechanisms of jet formation on the giant planets". Submitted.
- Lunar and Planetary Institute
- NASA/JPL/Space Science Institute
- NASA/JPL/University of Arizona (Cassini Imaging Team 2000)
- NASA/JPL, VIMS Team, University of Arizona
- Sanchez-Lavega, A., R. Hueso, S. Perez-Hoyos, E. Garcia-Melendo, and J. Rojas(2001). "Observations and models of the general circulation of Jupiter and Saturn". Lecture Notes and Essays in Astrophysics I, pp. 63-85.
- Sardeshmukh, P. and B. Hoskins (1988). "The generation of global rotational flow by steady idealized tropical divergence". Journal of the Atmospheric Sciences, 45(7) pp.1228-1251.

reference (3)

- Schneider, E. (1977). "Axially symmetric steady-state models of the basic state for instability and climate studies. Part II. Nonlinear Calculations". Journal of the Atmospheric Sciences, 34(2) pp.280-296.
- Schneider, T. and J.J. Liu (2009). "Formation of jets and equatorial superrotation on Jupiter". J. Atmos. Sci, 66 pp.579-601.
- Scott, R. and L. Polvani (2007). "Forced-dissipative shallow-water turbulence on the sphere and the atmospheric circulation of the giant planets". Journal of the Atmospheric Sciences, 64(9) pp.3158-3176.
- Simon-Miller, A.A., B. J. Conrath, P. J. Gierasch, G. S. Orton, R. K. Achterberg, F. M. Flasar, and B. M. Fisher (2006). "Jupiter's atmospheric temperatures: From Voyager IRIS to Cassini CIRS". Icarus, 180(1) pp.98-112.
- Sromovsky, L., P. Fry, T. Dowling, K. Baines, and S. Limaye (2001). "Coordinated 1996 HST and IRTF imaging of Neptune and Triton III. Neptune's atmospheric circulation and cloud structure". Icarus, 149(2) pp.459-488.