Development of Cosmic Dust Detectors Onboard Spacecrafts

H.Shibata¹, H.Ohashi², T.Hirai², K.Nogami³, T.Iwai⁴, S.Sasaki⁵, S.Hasegawa⁶, M.Fujii⁷, T.Miyachi⁷, S.Takechi⁸, S.Minami⁸, R.Srama⁹ and E.Grün⁹

¹Kyoto University,Japan
²Tokyo University of Marine Science and Technology,Japan
³Dokkyo Medical University,Japan
⁴The University of Tokyo,Japan
⁵National Astronomical Observatory,Japan
⁶Japan Aerospace Exploration Agency (JAXA) ,Japan
⁷Waseda University, Tokyo, Japan
⁸Osaka City University, Osaka, Japan
⁹Max-Planck-Institute for Nuclear Physics, Germany

Introduction

Cosmic dust composed of small (submicron- ~ micronsized) solid particles pervades interstellar space.

In order to investigate the flux, mass, velocity and chemical component of cosmic dusts, we have been developing three types of cosmic dust detectors for *in situ* measurement onboard spacecrafts.

IID (Impact Ionization dust/debris Detector)
Piezoelectric (PZT) impact detector
TOF (Time of Flight) mass spectrometer with IID or PZT

These instruments are calibrated by ground based experiments using with *Electrostatic Dust Accelerators*.

Max-Planck-Insitut für Kernphysik Heidelberg, Germany

2MV Van de Graff accelerator

Beam line

Target chamber

1. IID

(Impact Ionization dust/debris Detector)

- Gold plated metal target
- Double entrance grids
- Large impact area (20cm x 20cm)
- Light weight

Principle of Impact Ionization Dust Detector

Charge Signal Particle Mass , Velocity

Impact velocity vs Rise time

Impact velocity vs Charge/mass

2. Piezoelectric Impact Detector MDM (Mercury Dust Monitor) PZT (piezoelectric lead zirconate titanate) element as an impact target

Measurements of dust particle

- 1) Number of incoming dust particle with crude direction
- 2) Momentum or velocity of particle

BepiColombo

MPO (Mercury Planetary Orbiter) (ESA)

MMO (Mercury Magnetospheric Orbiter) (JAXA)

ESA /JAXA joint mission

Launch July 2014 Ariane 5 Arrival May 2020 One year research

MDM (Mercury Dust Monitor)

PZT sensor in the dust accelerator chamber

Typical waveform (MPI-K)

Velocity dependent (Iron particles)

5.5 km/s

Rise time vs. velocity of single peaked pulse High speed impact (> 8 km/s)

3. TOF-MS with IID or PZT

- Impact Induced Plasma (Particle mass and velocity)
- Chemical Analysis (Secondary ion mass analysis)
 - TOF (Time of Flight) mass spectrometer

Target	Signal analysis	Feature
Metal plate	Mass, velocity	Moderate signal
PZT	Mass, velocity	Velocity from waveform
MicroPZT	Mass, velocity	Large signal

Reflectron (Prototype)

Curved Potential TOF-MS

Parallel Potential Type

Curved Potential Type

Schematics of target setup

Micro Piezoelectric Element

Micro-PZT 25micron square, 250micron high