表層密度を推定する

課題演習-2-

無補償を仮定した場合、Airy Isostasy を仮定した場合 それぞれ表層密度を推定し、地域性等を議論せよ。

アドミッタンス

$$\mathbf{Z}(k) = \frac{output}{input} = \frac{\Delta \mathbf{g}(k)}{\mathbf{H}(k)}$$

 $\Delta \mathbf{g}(k)$: Fourier Transform of gravity anomaly

 $\mathbf{H}(k)$: Fourier Transform of the topography

- * 伝達関数
- *地形(加重)に対する重力応答の程度

地形が無補償の場合

 $\Delta \mathbf{g}(k)_{topo} = 2\pi \rho_c G\mathbf{H}(k)$

 ρ_c : crustal density

G: Gravitational Constant

- *表面地形による重力異常は上式で表される。
- *したがって、アドミッタンスは波数に寄らず一定値となる。

$$\mathbf{Z}(k) = 2\pi \rho_c G$$

AiryIsostasyが成り立っている場合

- *表面地形に対応する補償面の凹凸を持つ。
- *モホ面で補償が成り立っているとすると...

$$\Delta \mathbf{g}(k)_{moho} = 2\pi \left(\rho_m - \rho_c\right) G\left(-\frac{\rho_c}{\rho_m - \rho_c}\mathbf{H}(k)\right) e^{-kt}$$

 ρ_c : mantle density

t: mean crustal thickness

*トータルでは

$$\Delta \mathbf{g}(k)_{total} = \Delta \mathbf{g}(k)_{topo} + \Delta \mathbf{g}(k)_{moho}$$

*なので、

$$\mathbf{Z}(k) = 2\pi \rho_c G \left(1 - e^{-kt} \right)$$

SHTOOLS

局在化アドミッタンスを計算する

- * SHTOOLSのexamplesディレクトリにある
 SHLocalizedAdmitCorrという例題のプログラムがほぼそ
 のまま使用可能です。
- *出力されたアドミッタンスを元に、最小自乗法で表層密度を求めます。