An exploration of the intense fine-scale meteorology on Mars by modeling and observations

A. Spiga

Dept. Physics & Astronomy, The Open University, UK

with S.R. Lewis [The Open University, UK] and **F. Forget** *[LMD/CNRS, France]*

Background Recent missions to Mars yielded unprecedented views of the Red Planet. High-resolution measurements carried out by the instruments onboard Mars Global Surveyor between 1996 and 2006 revealed the diversity of the Martian meteorological phenomena at various horizontal scales below 100 kilometers. More details were eventually provided by the (still ongoing) high-accuracy measurements of the Mars Exploration Rovers, Mars Express orbiter and Mars Reconnaissance Orbiter. Large-scale atmospheric circulation (horizontal scale ~ 100-1000 km) can be simulated by general circulation models with coarse grid and simplifying assumptions, such as hydrostaticity. From the early work of the 60s-70s to the recent efforts in the 90s-00s, these tools were crucial to

achieve a satisfying understanding of the global climate on Mars, but were

proved unable to adress key questions of local meteorology.

models able to resolve atmospheric dynamics from the meso-scale (100-1 km) to the micro-scale (<1 km, where larger turbulent eddies are computed by the model) is thus critical. The LMD Mesoscale Model is a new versatile simulator of the Martian atmosphere and environment at horizontal scales ranging from 100s of km to 10s of m. The model combines the NCEP-NCAR fully compressible nonhydrostatic ARW-WRF dynamical core, adapted to Mars, with the LMD-GCM comprehensive set of physical parameterizations for the Martian dust, CO₂, water and photochemistry cycles. Since

LMD-GCM large-scale simulations are also used to drive the mesoscale model at the boundaries of the chosen domain of interest, a high level of downscaling consistency is reached.

Recent modelling The need for realistic numerical

177

174 -

171

168

165

162

159

156

153

150

Topographic summer clouds Water ice clouds have been observed between mid-spring and mid-summer in the vicinity of the Tharsis and Olympus Mons volcanoes. The water ice clouds controlled by the Tharsis and Olympus Mons topographical obstacles are reasonably reproduced by the model, which predicts consistent altitudes of the afternoon clouds with respect to remote-sensing retrievals. The main dynamical mechanism involved in the formation of the clouds is the strong water vapor advection by the afternoon upslope winds above the hygropause.

Nocturnal warm slopes Warming of the surface occurs under the influence of katabatic (downslope) winds which develop during the night and cause air masses 10-100 meters above the surface to be adiabatically compressed as they descend along steep slopes. The surface temperature increases because the warmer overlying atmosphere enhances the downward thermal infrared flux to the surface. Apparent thermal inertia obtained through soil modeling (which does not take into account atmospheric circulation) might not correspond to actual thermal inertia as inferred from soil characteristics.

Gravity waves Wave patterns are detected on the southern polar region of Mars, traced by the O2 dayglow emission at $\lambda = 1.27 \ \mu m$. Observations are carried out by the OMEGA spectrometer on board Mars Express. Mesoscale modelling of high-altitude vertical motion shows that the observed features can be related to gravity waves triggered by interactions between flow and topography. These results confirm that airglow imagery is a powerful method to detect and study the bi-dimensional propagation of gravity waves. Latitudinal variations of wave activity show preferential emission and propagation of gravity waves between latitudes 60S and 70S.

form in the wake of the volcano. trapped lee wave activity : vortices appear on the flanks of the volcan nighttime flow is characterized by strong gravity wave activity, as a significant part of the incoming

O2 dayglow from Mars/Express OMEGA in southern polar regions, end of summer. Modeled vertical velocity 40 km above MOLA reference areoid.

Dust Devils Dust devils are common on both the Earth and Mars. These small whirlwinds are caused by heating of the surface and made visible by entrained dust and sand. Such vortices are reproduced as part of the general structure of the daytime boundary layer convection by Large-Eddy Simulations performed in idealized conditions with the mesoscale model. Vortical structures in the model share all the characteristics of dust devils measured on Mars by Pathfinder.

Regional variability of convection The dramatic regional variations of the boundary-layer depth revealed by Mars Express radio-occultations are quantitatively reproduced by the Martian Large-Eddy Simulations. Under specific conditions, both the model and the measurements show a distinctive positive correlation between surface topography and boundary-layer depth. In the tenuous CO, Martian near-surface environment, the daytime boundary-layer is to first order controlled by the infrared radiative heating, fairly independent of elevation, which implies a simple correlation

References Please find further information in the following papers available in http://web.lmd.jussieu.fr/~aslmd/publications.html

Spiga, A., S.R. Lewis, F. Forget, E. Millour, L. Montabone, J.-B. Madeleine, The Impact of Katabatic Winds on Martian Thermal Inertia Retrievals, to be submitted to Icarus Altieri F., A. Spiga, L. Zasova, G. Bellucci, Gravity waves in Martian polar regions: O2 airglow maps and mesoscale modelling, to be submitted to Geophysical Research Letters Spiga, A., Elements of comparison between Martian and terrestrial mesoscale meteorological phenomena: katabatic winds and boundary layer convection, in review for publication in Planetary and Space Science. Spiga, A., F. Forget, S.R. Lewis, and D. Hinson (2009), Structure and Dynamics of the Convective Boundary Layer on Mars as Inferred from Large-Eddy Simulations and Remote-Sensing Measurements, accepted in Quart. Journ. of Royal Meteorol. Soc. Spiga, A., and F. Forget (2009), A new model to simulate the Martian mesoscale and microscale atmospheric circulation: Validation and first results, J. Geophys. Res., 114, E02009, doi:10.1029/2008JE003242.