Origins and Evolutions of Planetary Atmospheres What are they made of?

Origins: Sources and Sinks

Evolutions of Atmospheres Mostly Earth Others if time permits

Atmospheric Inventories of ordinary atmospheres

Supplemented by known crustal inventories

Supplemented by known crustal inventories

Nitrogen Isotopes: unsettled because primordial ratio is uncertain

Nitrogen Isotopes: unsettled because primordial ratio is uncertain

Nitrogen Isotopes. Titan's excess ¹⁵N also suggests escape. If so, there must have been a **huge** amount of N initially

Deuterium. Earth (=SMOW=Standard Mean Ocean Water)

Deuterium. Mars D/H is heavy and is reported to vary. Different H2O-ice reservoirs with different escape histories?

Deuterium. Enceladus's geysers = comets?

Deuterium. Implies three different source reservoirs? Titan's place unclear. (nb H_2 escape from Titan *lowers* Titan's D/H)

Carbon

```
Two stable isotopes <sup>12</sup>C, <sup>13</sup>C.
```

 $^{12}C/^{13}C = 90$ in most solar system materials.

```
organic matter typically has a little more <sup>12</sup>C (2.5-6%). In Earth air <sup>12</sup>CH<sub>4</sub>/<sup>13</sup>CH<sub>4</sub> = 95
```

Only other interesting data in Solar System are for Titan: ${}^{12}C/{}^{13}C = 90$ in C_2H_n

while

 ${}^{12}C/{}^{13}C = 82$ in CH₄

This can be interpreted as evidence that CH_4 is a remnant of an evolved reservoir (i.e., there might not be a lot of CH_4 left)

Noble gases Helium ⁴He is mostly radiogenic 232 Th (t_{1/2}=12 Gyr) 235 U (t_{1/2}=0.7 Gyr) ^{238}U (t_{1/2}=4.5 Gyr) ³He is mostly primordial ³He flux Earth 1000 moles/yr ~10% of Earth's ⁴He is primordial Noble gases Neon - 3 isotopes ²⁰Ne, ²¹Ne, ²²Ne ²⁰Ne and ²²Ne are mostly primordial ²¹Ne is very rare, partly radiogenic Ne in the mantle is isotopically lighter than Ne in air or meteorites Ne, He, and H_2 do not condense

> N/Ne = 1 in the Sun but Ne/N = 10⁻⁵ on Earth

Argon - 3 isotopes ³⁶Ar, ³⁸Ar, ⁴⁰Ar ³⁶Ar and ³⁸Ar are primordial. 36 Ar/ 38 Ar = 5.3 Ar might condense at ~25 K ⁴⁰Ar is almost entirely radiogenic 40 K (t_{1/2}=1.25 Ga) Earth is 50% degassed Venus is 12% degassed Mars is >0.5% degassed 36 Ar/ 38 Ar = 3.9 -> Ar has escaped! Titan is ~7% degassed

Xenon, Lord of the Isotopes 9 stable isotopes ! **Profound Mass Fractionations !!** ¹²⁹Xe is partly radiogenic ¹²⁹I ($t_{1/2} = 15.7$ Myr) 131,132,134,136Xe are partly fissogenic 238 U (t_{1/2} = 4.5 Gyr) ²⁴⁴Pu ($t_{1/2}$ = 81 Myr) all Xe isotopes have some radiogenic e.g., ¹³⁰Xe can be made from ¹³⁰Ba

Relative to Solar, Normalized to ⁸⁴Kr

More fun Xenon Facts - Radiogenic Xe is missing

$$^{129}I \rightarrow ^{129}Xe^* \quad \tau_{1/2} = 15.7 \text{ Ma}$$

using $\frac{^{129}I}{^{127}I} = 1 \times 10^{-4}$ and $(^{127}I)_{BSE} = 11 \text{ ppb}$

We expect 3x10¹³ moles of ¹²⁹Xe*

Earth Air contains $4.2x10^{12}$ moles of ^{129}Xe 7% of ^{129}Xe in air is radiogenic = $2.9x10^{11}$ moles of $^{129}Xe^*$

Hence 99% of ¹²⁹Xe* is missing. Seven half-lives = 110 Ma. But wait... There's More!

²⁴⁴Pu
$$\rightarrow {}^{129,131,132,134,136}$$
Xe* $\tau_{1/2} = 81$ Ma
using $\frac{{}^{244}Pu}{{}^{238}U} = 0.008$ and $({}^{238}U)_{BSE} = 21$ ppb

7x10⁻⁵ of ²⁴⁴Pu decays produce ¹³⁶Xe*

•We expect 2x10¹¹ moles of ¹³⁶Xe*

Earth Air contains 1.34x10¹² moles of ¹³⁶Xe < 4% is radiogenic (upper limit, consistent with 0) < 5x10¹⁰ moles of ¹³⁶Xe*

At least 75% of ¹³⁶Xe* is missing. Did it escape? if it did, it did so >200 Ma after Earth formed. For Mars, >96% of ¹³⁶Xe* is missing.

Twice Normalized Xenon Isotopic Abundances

Twice Normalized Xenon Isotopic Abundances

Twice Normalized Xenon Isotopic Abundances

Twice Normalized Xenon Isotopic Abundances

Sources

Primary Atmospheres

gravitational capture of nebular gases, mostly H₂ & He Jupiter and Neptune are examples of this Earth's ³He may be primary but Earth's Ne/N = 10⁻⁵ means that Earth's primary atmosphere escaped. escape is easy if the solar nebula dispersed when the planets were not much bigger than Mars

exercise:

compare thermal velocity of H_2 to escape velocity do same for H_2O and for silicate vapors (with mean molecular weight of ~40)

Sources

Secondary Atmospheres degassed from condensed materials. condensation probably took place in the solar nebula

There are two basic variants:

- gases are released from the interior of the planet as it heats up (by impact or by radioactivity). Giant impacts are an important special case. Radiogenic Noble gases are another.
- gases are released from meteorites on impact for V>5 km/s. They can also be released by ablation when meteorites comets etc strike an atmosphere. This will work for ices with V>1.5 km/s.

sources: an embarrassment of riches

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

> QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

The Sources are Big. What about Escape?

Some Escape Processes

Thermal Escape

Jeans escape. one molecule at a time. slow. H on Earth, Mars hydrodynamic escape. Pressure gradient flow. fast. solar wind, Pluto? Titan?? Ancient Venus, future Europa? "kinetic models." post-Maxwellian "Jeans" escape. fast. solar breeze, electrostatic polar wind, Titan? Nonthermal Escape. one atom at a time. slow. charge exchange H on Earth, Venus dissociative recombination N, O, C on Mars solar wind sweeping, sputtering, etc. Ar, O on Mars; S & O on Io; etc

Impact Erosion could be fast

Jeans Escape (thermal escape one atom at a time)

Jeans (1904) integrates the Maxwell-Boltzmann velocity distribution to obtain total flux of outbound atoms that exceed the escape velocity at the exobase

$$\phi_J = n_e a \left(1 + \frac{r_e}{H}\right) \exp\left(-\frac{r_e}{H}\right) \frac{B}{\sqrt{2\pi}} \ \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

where n_e is the density at the exobase, H is the scale height, a is the isothermal sound speed, and B is a factor of order unity.

$$\frac{r}{H} = \frac{GM}{a^2r} = \frac{v_{\rm esc}^2}{2a^2} \approx \frac{\text{escape energy}}{\text{thermal energy}}$$

Our Plutocrat

And gases escape to space:

"the maximum speed [a molecule] may attain Clerk-Maxwell deduced from the doctrine of chances to be seven-fold the average. What may happen to one, must eventually happen to all."

Bottlenecks to thermal escape

Condensation

water on Earth at tropopause water on Venus in sulfuric acid water on Mars at the surface methane on Titan?

Solar Energy

Photolysis (chemical creation of H, H_2) methane to H_2 on Titan?

Diffusion

H, H_2 on Earth, Titan, Mars CH_4 on Titan?

Energy limited escape (the blunt instrument)

• pretty simple - all EUV energy goes into escape. this applies if there is a lot of H in the atmosphere

$$\frac{GM \times \dot{M}_{\rm EL}}{R} = \epsilon F_{\rm EUV} \times \pi R^2$$

- today solar EUV flux at Earth is ~3 erg/cm²/s. The heating efficiency is between 15-60%. The current energy-limited flux would be ~8x10¹³ g/yr,
- or ~3x10¹¹ H atoms cm⁻² s⁻¹

The diffusion-limited flux

This applies when escape from the exobase is easy. Escape flux is then limited by how quickly the H can diffuse through the thermosphere

$$\phi_i < \phi_{\lim} \equiv b_{ia} \left(\frac{1}{H_a} - \frac{1}{H_i}\right) \frac{f_i}{1 + f_i}$$

where
$$f_i \equiv \frac{n_i}{n_a}$$
 (=mixing ratio if f_i is small)

and b_{ia} is the binary diffusion coefficient [cm⁻¹s⁻¹] = [thermal velocity] ÷ [collision cross section] between two species *i* and *a*

Evaluated for Earth and N₂: $\phi_{\text{lim}} = 2.5 \times 10^{13} f_{\text{tot}} (\text{H}) \text{ cm}^{-2} \text{s}^{-1}$

Hydrodynamic escape

continuity
$$\rho ur^2 = {\rm constant}$$

momentum

$$u\frac{\partial u}{\partial r} + \frac{1}{\rho}\frac{\partial p}{\partial r} = -\frac{GM}{r^2}$$

isothermal + perfect gas (combines energy eqn and eqn of state)

$$p = a^2 \rho$$

Hydrodynamic escape

arrange as one equation for flow velocity u:

$$\left(u^2 - a^2\right)\frac{1}{u}\frac{\partial u}{\partial r} = \frac{2a^2}{r} - \frac{GM}{r^2}$$

This is the isothermal solar wind equation.

There is a critical distance $r_{\rm c}$ where both sides of the equation equal zero.

Hydrodynamic escape

$$(u^2 - a^2) \frac{1}{u} \frac{\partial u}{\partial r} = \frac{2a^2}{r} - \frac{GM}{r^2}$$

The unique "critical solution" is the one where

$$u_c = a$$
 at $r_c = \frac{GM}{R^2}$

The mean flow *u* increases indefinitely and pressure goes to zero as *r* goes to infinity. Equations like this one describe thermal escape when escape is vigorous.

Isothermal planetary wind. The specific example shown here is for Europa held at 301.6 K for which $R_c = 7R_s$. The sound speed is 373 m/s.

Fractionation during hydrodynamic escape

The relative escape velocity of a heavy species to H is

 $W_j = X_j W_H$

where the fractionation factor

$$x_{j} = 1 - \frac{gb_{jH}}{\phi_{H}kT} (m_{j} - m_{H}) \quad (0 \le x_{j} < 1)$$

The remaining *j* scales with the remaining Hydrogen as

$$\frac{N_j(t)}{N_j(0)} = \left(\frac{N_{\rm H}(t)}{N_{\rm H}(0)}\right)^{\chi_j}$$

Rayleigh fractionation

Fractionation during hydrodynamic escape

The relative escape velocity of a heavy species to H is

 $W_j = X_j W_H$

where the fractionation factor

$$x_{j} = 1 - \frac{gb_{jH}}{\phi_{H}kT} (m_{j} - m_{H}) \quad (0 \le x_{j} < 1)$$

The resulting fractionation between two isotopes of the same element is approximately linear in mass

$$\frac{N_i(t)}{N_i(0)} \div \frac{N_j(t)}{N_j(0)} = \left(\frac{N_{\rm H}(t)}{N_{\rm H}(0)}\right)^{x_i - x_j}$$

Hydrodynamic H Escape has been suggested as cause of Xe fractionation many times, beginning with Sekiya et al 1981.

Because Xe is the heaviest gas in the atmosphere, this should happen to everything else in the atmosphere.

But Kr and Ar are not strongly mass fractionated.

A possibility is that Xe is present as Xe⁺, because Xe is the only noble gas that ionizes more easily than H.

The huge cross-section of Coulomb interaction allows Xe⁺ to be dragged along open magnetic field lines by escaping H⁺

Are atmospheres determined by escape?

Big Picture: plot Insolation against escape velocity for all planets

Insolation measures how strongly the Sun attacks the atmosphere. examples: UV or X-ray heating Solar Wind

Escape velocity is a measure of how strongly a planet can hold its volatiles

Our Solar System

Our Solar System

add the transiting extrasolar planets

e.g., 5 Gyr lifetimes for evaporating Methane planets [cf Schaller and Brown 2007]

The same thing doesn't work as well for water ice

Hydrodynamic Thermal escape can also be applied to giant planets

Hydrodynamic Thermal escape can also be applied to giant planets

Tidal disruption (Roche Limit) does not work for current orbits

but it does work well for very elliptical capture orbits

EUV-driven thermal escape can supplement tides

5 Billion Year Planet Lifetimes

especially early when EUV was big and the planets puffy

5 Billion Year Planet Lifetimes

but the planets may also be thermally unstable, EUV or no

5 Billion Year Planet Lifetimes

Impact velocity is a measure of the specific energy available to erode the atmosphere

references

- Charbonneau, D., Zachory, K. B., Jonathan, I., Christopher, J. B., Philip, N., Lars, A. B., Christophe, L., xavier, B., david, W. L., Stephane, U., ruth, A. M., Matthew, J. H., Emillio, E. F., Joshua, J. W., Didier, Q., Francesco, P., Michel, M., Xaview, D., Thierry, F., 2009: A super-Earth transiting a nearby low-mass star., *Nature*, submitted
- Jeans, J. H., 1904: The dynamical theory of gases. Cambridge University Press.
- Sekiya, M., Hayashi, C., Nakazawa, K., 1981: Dissipation of the Primordal terrestrial Atmosphere Due to Irradiation of the Solar Far-UV during T Tauri Stage., *Prog, Theo, Phys.*, **66**, 1301-1316.
- Sekiya, M., Nakazawa, K., Hayashi, C., 1981: Dissipation of the Primordal terrestrial Atmosphere Due to Irradiation of the Solar EUV. *Prog, Theo, Phys.*, **64**, 1968-1985.
- Schaller, E. L., Brown, M. E., 2007: DETECTION OF METHANE ON KUIPER BELT OBJECT (50000) QUAOAR., *Astrophys, J.*, **670**, L49-L51.
- Schaller, E. L., Brown, M. E., 2007: VOLATILE LOSS AND RETENTION ON KUIPER BELT OBJECTS., *Astrophys, J.*, **659**, L61-L64.
- Yin, Q., 2004: From Dust to Planets: The Tale Told by MOderately Volatile Element Depletion (MOVED). *Workshop on Chondrites and the Protoplanetary Disk*, November 8-11, 2004, Kauai, Hawaii, abstract no.9066.